Documentation - The Zig Programming
Language
Zig Language Reference

Zig Version

0.1.1]0.2.0/0.3.0(0.4.0]0.5.0]0.6.0]0.7.1|0.8.1|0.9.1 | 0.10.1 | 0.11.0 | master

Table of Contents

Introduction
Zig Standard Library
Hello World
Comments
o Doc Comments
o Top-Level Doc Comments
e Values
o Primitive Types
o Primitive Values
o String Literals and Unicode Code Point Literals

s FEscape Sequences
s Multiline String Literals

o Assignment
s undefined

o Zig Test

o Test Declarations
Nested Container Tests
Test Failure
Skip Tests
Report Memory Leaks
Detecting Test Build
Test Output and Logging

The Testing Namespace
Test Tool Documentation

e \Variables

o Identifiers

o Container Level Variables
o Static Local Variables
o
o

0 0 0 0o o o o o

Thread Local Variables
Local Variables

e Integers

o Integer Literals
o Runtime Integer Values

e Floats

o Float Literals

o Floating Point Operations
e Operators

o Table of Operators

o Precedence
e Arrays

o Multidimensional Arrays
o Sentinel-Terminated Arrays

e Mectors
e Pointers

https://ziglang.org/documentation/0.1.1/
https://ziglang.org/documentation/0.2.0/
https://ziglang.org/documentation/0.3.0/
https://ziglang.org/documentation/0.4.0/
https://ziglang.org/documentation/0.5.0/
https://ziglang.org/documentation/0.6.0/
https://ziglang.org/documentation/0.7.1/
https://ziglang.org/documentation/0.8.1/
https://ziglang.org/documentation/0.9.1/
https://ziglang.org/documentation/0.10.1/
https://ziglang.org/documentation/master/

volatile
Alignment
allowzero
Sentinel-Terminated Pointers
e Slices

o Sentinel-Terminated Slices
e struct

o Default Field Values
extern struct
packed struct
Struct Naming
Anonymous Struct Literals

Tuples
um

o extern enum
o Enum Literals
o Non-exhaustive enum
e union
o Tagged union
o extern union
o packed union
o Anonymous Union Literals
e opaque
Blocks
o Shadowin:
o Empty Blocks
e switch
o Exhaustive Switchin
o Switching with Enum Literals
o Inline switch
e while
Labeled while
o while with Optionals
o while with Error Unions
o inline while

o o o

o

0o o0 o o o

e (i

=

o

L]
—

or

o Labeled for
o inline for

o I

fer
unreachable
o Basics
o At Compile-Time
e noreturn
Functions
o Pass-by-value Parameters
o Function Parameter Type Inference
o Function Reflection
e Errors
o Error Set Type
s The Global Error Set

o Error Union Type
s catch

5

errdefer

Common errdefer Slip-Ups

Merging Error Sets
s Inferred Error Sets

o Error Return Traces
s Implementation Details
e Optionals
o Optional Type
o null
o Optional Pointers
e Casting

o Type Coercion
Type Coercion: Stricter Qualification
Type Coercion: Integer and Float Widening
Type Coercion: Slices. Arrays and Pointers
Type Coercion: Optionals
Type Coercion: Error Unions
Type Coercion: Compile-Time Known Numbers
Type Coercion: Unions and Enums
Type Coercion: undefined
s Type Coercion: Tuples to Arrays
o Explicit Casts
o Peer Type Resolution

Zero Bit Types
o void

e Result Location Semantics

e usingnamespace
e comptime

o Introducing the Compile-Time Concept
s Compile-Time Parameters
s Compile-Time Variables
s Compile-Time Expressions

o Generic Data Structures

o Case Study: print in Zig

Assembly

o OQutput Constraints

o Input Constraints

o Clobbers

Global Assembly

o

e Atomics

e Async Functions
o Builtin Functions

(@addrSpaceCast
@addWithOverflow
(@alignCast
@alignOf
@as
(@atomicLoad

atomicRmw
(@atomic Store
@bitCast
@bitOffsetOf
(@bitSizeOf
(@breakpoint
(@mulAdd
(@byteSwap
(@bitReverse
@offsetOf

call
(@cDefine
(@clmport
(@clnclude
@clz
(@cmpxchgStrong
(@cmpxchgWeak
@compileError
@compileLog
(@constCast

ctz
(@cUndef

¢ VaAr

¢ VaCo

cVaEnd

(@cVaStart
@divExact

0O 0 0 0O 0O 0O 0O 0O 0O OO OO OO OO OO OO OO 0O 0O 0O 0O 06 0 0 0 0o o

0O 0 0 0O 0O 0O 0O 0O 0O OO OO OO OO OO OO OO OO OO OO 0O 0O 0O O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 06 0O 0O 0O 0O 0O 0O 0O 06 0O 0 06 0O 0 0 0 0 0 o

@divFloor
@divTrunc
(@embedFile
@enumFromInt
@errorFromInt
(@errorName
(@errorReturnTrace
@errSetCast
(@export
@extern

fence
@field
@fieldParentPtr
@floatCast
@floatFromInt
@frameAddress
(@hasDecl
(@hasField

import
@inComptime
@intCast
@intFromBool
@intFromEnum
@intFromError
@intFromFloat
@intFromPtr

max
@memcpy
(@memset
(@min
(@wasmMemorySize
@wasmMemoryGrow

mod
@mulWithOverflow
(@panic
@popCount
(@prefetch
(@ptrCast
(@ptrFromInt

rem
(@returnAddress
(@select
(@setAlignStack

setCold
(@setEvalBranchQuota
(@setFloatMode
@setRuntimeSafety
(@shlExact
@shlWithOverflow
(@shrExact
(@shuffle
(@sizeOf
(@splat
(@reduce
@src

=
=]

2

@exp
@exp
@log
@log2
@logl0
(@fabs

@floor
@ceil
(@trunc
(@round
@subWithOverflow
(@tagName
@This
@trap
(@truncate
@Type
@typelnfo
(@typeName
@TypeOf
(@unionlnit
(@ Vector
(@volatileCast
(@w orkGroupld
@workGroupSize

o (@workltemld
e Build Mode

o Debug

o ReleaseFast

o ReleaseSafe

o ReleaseSmall
e Single Threaded Builds
e Undefined Behavior

o Reaching Unreachable Code
Index out of Bounds

Cast Negative Number to Unsigned Integer
Cast Truncates Data

Integer Overflow
s Default Operations

s Standard Library Math Functions
s Builtin Overflow Functions
s Wrapping Operations

Exact Left Shift Overflow

Exact Right Shift Overflow
Division by Zero
Remainder Division by Zero
Exact Division Remainder
Attempt to Unwrap Null

Attempt to Unwrap Error
Invalid Error Code

Invalid Enum Cast
Invalid Error Set Cast

Incorrect Pointer Alignment
Wrong Union Field Access

Out of Bounds Float to Integer Cast
Pointer Cast Invalid Null

e Memor
Choosing an Allocator
Where are the bytes?
Implementing an Allocator
Heap Allocation Failure
Recursion
o Lifetime and Ownership
Compile Variables
Root Source File
Zig Build System
o Building an Executable
o Building a Librar
o Compiling C Source Code
o C
o C Type Primitives
o Import from C Header File

0 0 0 0 0O 0O 0O 0O 0O 0O 0O 0O 0O 0 0 0 0o o

o
o
o
o

0 0 0 0 0 0O 0O 0 0 0 0o 0 o o

o 0 o o o

o C Translation CLI
s Command line flags
s Using -target and -cflags

s (@clmport vs translate-c

C Translation Caching
Translation failures

o
o
o C Macros
o C Pointers
o C Variadic Functions
o Exporting a C Library
o Mixing Object Files
WebAssembly

o Freestanding

o WASI
e Targets
Style Guide

o Whitespace

o Names

o Examples

o Doc Comment Guidance
Source Encoding
Keyword Reference
Appendix

o Containers

o Grammar

o Zen

Introduction §

Zig is a general-purpose programming language and toolchain for maintaining robust,
optimal, and reusable software.

Robust
Behavior is correct even for edge cases such as out of memory.
Optimal
Write programs the best way they can behave and perform.
Reusable
The same code works in many environments which have different constraints.
Maintainable
Precisely communicate intent to the compiler and other programmers. The language
imposes a low overhead to reading code and is resilient to changing requirements
and environments.

Often the most efficient way to learn something new is to see examples, so this
documentation shows how to use each of Zig's features. It is all on one page so you can
search with your browser's search tool.

The code samples in this document are compiled and tested as part of the main test suite of
Zig.

This HTML document depends on no external files, so you can use it offline.

Zig Standard Library §

The Zig Standard Library has its own documentation.

Zig's Standard Library contains commonly used algorithms, data structures, and definitions
to help you build programs or libraries. You will see many examples of Zig's Standard
Library used in this documentation. To learn more about the Zig Standard Library, visit the
link above.

Hello World §

https://ziglang.org
https://ziglang.org/documentation/master/std/

const std = @import ("std");

pub fn main() !void {
const stdout = std.io.getStdOut() .writer();
try stdout.print("Hello, {s}!\n", .{"world"});
}

hello.zig

$ zig build-exe hello.zig
$./hello
Hello, world!

Shell

The Zig code sample above demonstrates one way to create a program that will output:
Hello, world!.

The code sample shows the contents of a file named hello.zig. Files storing Zig source
code are UTF-8 encoded text files. The files storing Zig source code must be named with
the . zig extension.

Following the hello.zig Zig code sample, the Zig Build System is used to build an
executable program from the hello.zig source code. Then, the hello program is
executed showing its output Hello, world!. The lines beginning with $ represent
command line prompts and a command. Everything else is program output.

The code sample begins by adding the Zig Standard Library to the build using the @import
builtin function. The eimport ("std") function call creates a structure that represents the
Zig Standard Library. The code then declares a constant identifier, named std, that gives
access to the features of the Zig Standard Library.

Next, a public function, pub fn, named main is declared. The main function is necessary
because it tells the Zig compiler where the start of the program exists. Programs designed
to be executed will need a pub fn main function.

For more advanced use cases, Zig offers other features to inform the compiler where the
start of the program exists. Also, libraries do not need a pub fn main function because
library code is called by other programs or libraries.

A function is a block of any number of statements and expressions that, as a whole,
perform a task. Functions may or may not return data after they are done performing their
task. If a function cannot perform its task, it might return an error. Zig makes all of this
explicit.

In the hello.zig code sample, the main function is declared with the !void return type.
This return type is known as an Error Union Type. This syntax tells the Zig compiler that
the function will either return an error or a value. An error union type combines an Error
Set Type and any other data type (e.g. a Primitive Type or a user-defined type such as a
struct, enum, or union). The full form of an error union type is <error set type>!<any
data type>. In the code sample, the error set type is not explicitly written on the left side
of the ! operator. When written this way, the error set type is an inferred error set type.
The void after the ! operator tells the compiler that the function will not return a value
under normal circumstances (i.e. when no errors occur).

Note to experienced programmers: Zig also has the boolean operator !'a where a is a value
of type bool. Error union types contain the name of the type in the syntax: !<any data
type>.

In Zig, a function's block of statements and expressions are surrounded by an open curly-
brace { and close curly-brace }. Inside of the main function are expressions that perform
the task of outputting Hello, world! to standard output.

First, a constant identifier, stdout, is initialized to represent standard output's writer. Then,
the program tries to print the Hello, world! message to standard output.

Functions sometimes need information to perform their task. In Zig, information is passed
to functions between an open parenthesis (and a close parenthesis) placed after the
function's name. This information is also known as arguments. When there are multiple

arguments passed to a function, they are separated by commas , .

The two arguments passed to the stdout.print () function, "Hello, {s}!\n" and .
{"world"}, are evaluated at compile-time. The code sample is purposely written to show
how to perform string substitution in the print function. The curly-braces inside of the
first argument are substituted with the compile-time known value inside of the second
argument (known as a tuple). The \n inside of the double-quotes of the first argument is
the escape sequence for the newline character. The try expression evaluates the result of
stdout.print. If the result is an error, then the try expression will return from main with
the error. Otherwise, the program will continue. In this case, there are no more statements
or expressions left to execute in the main function, so the program exits.

In Zig, the standard output writer's print function is allowed to fail because it is actually a
function defined as part of a generic Writer. Consider a generic Writer that represents
writing data to a file. When the disk is full, a write to the file will fail. However, we
typically do not expect writing text to the standard output to fail. To avoid having to handle
the failure case of printing to standard output, you can use alternate functions: the
functions in std.log for proper logging or the std.debug.print function. This
documentation will use the latter option to print to standard error (stderr) and silently return
on failure. The next code sample, hello again.zig demonstrates the use of
std.debug.print.

const print = @import ("std").debug.print;
pub fn main() void {
print ("Hello, world!\n", .{});
}
hello_again.zig
$ zig build-exe hello again.zig
$./hello again

Hello, world!

Shell

Note that you can leave off the ! from the return type because std.debug.print cannot
fail.

See also:

e Values

e (@import

e Errors

e Root Source File
e Source Encoding

Comments §

Zig supports 3 types of comments. Normal comments are ignored, but doc comments and
top-level doc comments are used by the compiler to generate the package documentation.

The generated documentation is still experimental, and can be produced with:
zig test -femit-docs main.zig
Shell
const print = @import ("std").debug.print;
pub fn main() void {
// Comments in Zig start with "//" and end at the next LF
byte (end of line).
// The line below is a comment and won't be executed.

//print ("Hello?", .{});

print ("Hello, world!\n", .{}); // another comment

comments.zig
$ zig build-exe comments.zig
$./comments

Hello, world!

Shell

There are no multiline comments in Zig (e.g. like /* */ comments
to have the property that each line of code can be tokenized out of

Doc Comments §

in C). This allows Zig
context.

A doc comment is one that begins with exactly three slashes (i.e. /// butnot ////);
multiple doc comments in a row are merged together to form a multiline doc comment.

The doc comment documents whatever immediately follows it.

/// A structure for storing a timestamp, with nanosecond

precision (this is a
/// multiline doc comment) .
const Timestamp = struct ({

/// The number of seconds since the epoch (this is also a

doc comment) .
seconds: 164, // signed so we can represent
a doc comment)

pre-1970 (not

/// The number of nanoseconds past the second (doc comment

again) .
nanos: u32,

/// Returns a ‘Timestamp' struct representing the Unix

epoch; that is, the

/// moment of 1970 Jan 1 00:00:00 UTC (this is a doc

comment too) .
pub fn unixEpoch() Timestamp {
return Timestamp {
.seconds = 0,
.nanos = 0,

}i
}i

doc_comments.zig

Doc comments are only allowed in certain places; it is a compile error to have a doc
comment in an unexpected place, such as in the middle of an expression, or just before a

non-doc comment.
/// doc-comment
//! top-level doc-comment
const std = @import ("std");
invalid_doc-comment.zig
$ zig build-obj invalid doc-comment.zig
docgen tmp/invalid doc-comment.zig:1:16: error:

expression, found 'a document comment'
/// doc-comment

~

Shell

pub fn main() void {}
/// End of file

unattached doc-comment.zig

$ zig build-obj unattached doc-comment.zig

docgen tmp/unattached doc-comment.zig:3:1: error:

documentation comment
/// End of file

expected type

unattached

Doc comments can be interleaved with normal comments. Currently, when producing the
package documentation, normal comments are merged with doc comments.

Top-Level Doc Comments §

Atop-level doc comment is one that begins with two slashes and an exclamation point:
//'; it documents the current module.

It is a compile error if a top-level doc comment is not placed at the start of a container,
before any expressions.

//! This module provides functions for retrieving the current

date and

//! time with varying degrees of precision and accuracy. It
does not

//! depend on libc, but will use functions from it if
available.

const S = struct {

//! Top level comments are allowed inside a container
other than a module,

//' but it is not very useful. Currently, when producing
the package

//!' documentation, these comments are ignored.

}i

tldoc_comments.zig

Values §

// Top-level declarations are order-independent:
const print = std.debug.print;

const std = @import ("std");

const os = std.os;

const assert = std.debug.assert;

pub fn main() void {
// integers
const one plus one: i32 =1 + 1;
print ("1 + 1 = {}\n", .{one plus one});

// floats
const seven_div_three: £32 = 7.0 / 3.0;
print ("7.0 / 3.0 = {}\n", .{seven div three});

// boolean

print ("{}I\n{}\n{}\n", .{
true and false,
true or false,
'true,

1)

// optional
var optional value: ?[]const u8 = null;
assert (optional value == null);

print ("\noptional 1l\ntype: {}\nvalue: {?s}\n",
@TypeOf (optional value), optional value,
1)

optional value = "hi";
assert (optional value != null);

print ("\noptional 2\ntype: {}\nvalue: {?s}\n",
@TypeOf (optional value), optional value,
1)

// error union

var number or error: anyerror!i32 = error.ArgNotFound;

print ("\nerror union l\ntype: {}\nvalue: {!}\n",
@TypeOf (number or error), number or_ error,

number_ or_error = 1234;
print ("\nerror union 2\ntype: {}\nvalue: {!}\n",
@TypeOf (number_or_error), number or_error,
P
}

values.zig

$ zig build-exe values.zig
$./values

1+1=2

7.0 / 3.0 = 2.33333325e+00
false

true

false

optional 1
type: ?[]const u8
value: null

optional 2
type: ?[]const u8
value: hi

error union 1
type: anyerror!i32
value: error.ArgNotFound

error union 2
type: anyerror!i32

value: 1234

Shell

-

ol
)i

-

Primitive Tvpes §

Primitive Types

Type C Equivalent Description
i8 int8 t signed 8-bit integer
u8 uint8 t unsigned 8-bit integer
il6 intl6_t signed 16-bit integer
ulé uintlé t unsigned 16-bit integer
i32 int32 t signed 32-bit integer
u32 uint32_t unsigned 32-bit integer
i64 int64 t signed 64-bit integer
u64 uint64_t unsigned 64-bit integer
1128 __int128 signed 128-bit integer
ul28 unsigned unsigned 128-bit integer
__int128
isize intptr_t signed pointer sized integer
usize u%ntpzrit, unsigned pointer sized integer. Also see #5185
slize
c_char char for ABI compatibility with C
c_short short for ABI compatibility with C
¢ ushort unsigned for ABI compatibility with C
- short
c int int for ABI compatibility with C
c_uint ?nilgned for ABI compatibility with C
- in
¢ long long for ABI compatibility with C
¢ ulong unsigned for ABI compatibility with C
- long
c_longlong long long for ABI compatibility with C
c ulonglong oroned for ABI compatibility with C
- long long

c_longdouble

fl6

£32

f64

£80

£128

bool

anyopaque

void
noreturn

type

anyerror

comptime_int

comptime_float

long double

_Floatlé6
float
double
double

_Float128

bool
void

(none)
(none)

(none)

(none)

(none)

(none)

for ABI compatibility with C
16-bit floating point (10-bit mantissa) IEEE-754-
2008 binary16

32-bit floating point (23-bit mantissa) IEEE-754-
2008 binary32

64-bit floating point (52-bit mantissa) IEEE-754-
2008 binary64

80-bit floating point (64-bit mantissa) IEEE-754-
2008 80-bit extended precision

128-bit floating point (112-bit mantissa) IEEE-754-
2008 binary128

true Or false
Used for type-erased pointers.
Always the value void{}

the type of break, continue, return,
unreachable,aﬂd while (true) {}

the type of types
an error code

Only allowed for comptime-known values. The type
of integer literals.

Only allowed for comptime-known values. The type
of float literals.

https://github.com/ziglang/zig/issues/5185

In addition to the integer types above, arbitrary bit-width integers can be referenced by
using an identifier of i or u followed by digits. For example, the identifier 17 refers to a
signed 7-bit integer. The maximum allowed bit-width of an integer type is 65535.

See also:

Integers
Floats

[]

[]

* void
e Errors
[]

@Type

Primitive Values §

Primitive Values

Name Description

true and false bool values

null used to set an optional type to null
undefined used to leave a value unspecified
See also:
e Optionals

e undefined

String Literals and Unicode Code Point Literals §

String literals are constant single-item Pointers to null-terminated byte arrays. The type of
string literals encodes both the length, and the fact that they are null-terminated, and thus
they can be coerced to both Slices and Null-Terminated Pointers. Dereferencing string
literals converts them to Arrays.

The encoding of a string in Zig is de-facto assumed to be UTF-8. Because Zig source code
is UTF-8 encoded, any non-ASCII bytes appearing within a string literal in source code
carry their UTF-8 meaning into the content of the string in the Zig program; the bytes are
not modified by the compiler. However, it is possible to embed non-UTF-8 bytes into a
string literal using \xNN notation.

Indexing into a string containing non-ASCII bytes will return individual bytes, whether
valid UTF-8 or not. The Zig Standard Library provides routines for checking the validity of
UTF-8 encoded strings, accessing their code points and other encoding/decoding related
tasks in std.unicode.

Unicode code point literals have type comptime int, the same as Integer Literals. All
Escape Sequences are valid in both string literals and Unicode code point literals.

In many other programming languages, a Unicode code point literal is called a "character
literal". However, there is no precise technical definition of a "character" in recent versions
of the Unicode specification (as of Unicode 13.0). In Zig, a Unicode code point literal
corresponds to the Unicode definition of a code point.

https://unicode.org/glossary

const print = Qimport ("std") .debug.print;
const mem = Qimport ("std").mem; // will be used to compare
bytes

pub fn main() void {

const bytes = "hello";

print ("{}\n", .{@TypeOf (bytes)}); //
*const [5:0]u8

print ("{d}\n", .{bytes.len}); // 5

print ("{c}\n", .{bytes[1]}); /] e

print ("{d}\n", .{bytes[51}); // 0

print ("{}\n", .{'e' == '"\x65'}); //
true

print ("{d}\n", .{'\u{lf4a9}'}); //
128169

print ("{d}\n", .{'Z'}); //
128175

print ("{u}\n", .{'5'});

print ("{}\n", .{mem.eql (u8, "hello", "h\x6511lo")});
// true

print ("{}\n", .{mem.eql (u8, "Qg", "\xf0\x9f\x92\xaf") });
// also true

const invalid utf8 = "\xff\xfe"; // non-UTF-8 strings
are possible with \xNN notation.

print ("0x{x}\n", .{invalid utf8[1]}); // indexing them
returns individual bytes...

print ("0x{x}\n", .{"Z2"[1]1}); // ...as does indexing
part-way through non-ASCII characters
}

string_literals.zig

$ zig build-exe string literals.zig
$./string literals
*const [5:0]u8

5]

e

0

true

128169

128175

5

true

true

Oxfe

0x9f

Shell

See also:

e Arrays
e Source Encodin

Escape Sequences §

Escape Sequences

Escape Sequence Name
\n Newline
\r Carriage Return
\t Tab
\\ Backslash
\' Single Quote
\" Double Quote
\xNN hexadecimal 8-bit byte value (2 digits)
\u{NNNNNN} hexadecimal Unicode code point UTF-8 encoded (1 or more digits)

Note that the maximum valid Unicode point is 0x10£££f£.

Multiline String Literals §

Multiline string literals have no escapes and can span across multiple lines. To start a
multiline string literal, use the \\ token. Just like a comment, the string literal goes until the
end of the line. The end of the line is not included in the string literal. However, if the next
line begins with \\ then a newline is appended and the string literal continues.

const hello world in c =
\\#include <stdio.h>

A\

\\int main (int argc, char **argv) {
A\ printf ("hello world\n");

\\ return 0;

A\ }

multiline_string_literals.zig

See also:

e (@embedFile

Assignment §

Use the const keyword to assign a value to an identifier:
const x = 1234;

fn foo () void {
// It works at file scope as well as inside functions.
const y = 5678;

// Once assigned, an identifier cannot be changed.
y = 1;
}

pub fn main() void {
foo();

}
constant_identifier cannot change.zig

$ zig build-exe constant_identifier_ cannot_change.zig
constant_identifier cannot change.zig:8:7: error: cannot
assign to constant

y += 1;

referenced by:

main: constant identifier cannot_ change.zig:12:5

callMain: /home/ci/actions-runner/_work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:564:17

remaining reference traces hidden; use '-freference-trace'
to see all reference traces

Shell

const applies to all of the bytes that the identifier inmediately addresses. Pointers have
their own const-ness.

If you need a variable that you can modify, use the var keyword:
const print = Q@import ("std") .debug.print;

pub fn main() void {
var y: 132 = 5678;

y +=1;

print ("{d}", .{y});
}

mutable var.zig

$ zig build-exe mutable var.zig
$./mutable var
5679

Shell

Variables must be initialized:

pub fn main() void {
var x: 132;

x =1;

}
var_must_be_initialized.zig

S zig build-exe var must be initialized.zig
var _must be initialized.zig:2:5: error: variables must be
initialized

var x: 132;

Shell
undefined §

Use undefined to leave variables uninitialized:
const print = Qimport ("std") .debug.print;

pub fn main() void {
var x: 132 = undefined;
x = 1;
print ("{d}", .{x});

}

assign_undefined.zig

$ zig build-exe assign undefined.zig
$./assign_undefined
1

Shell

undefined can be coerced to any type. Once this happens, it is no longer possible to
detect that the value is undefined. undefined means the value could be anything, even
something that is nonsense according to the type. Translated into English, undefined
means "Not a meaningful value. Using this value would be a bug. The value will be unused,
or overwritten before being used."

In Debug mode, Zig writes 0xaa bytes to undefined memory. This is to catch bugs early,
and to help detect use of undefined memory in a debugger. However, this behavior is only
an implementation feature, not a language semantic, so it is not guaranteed to be observable
to code.

Zig Test §

Code written within one or more test declarations can be used to ensure behavior meets
expectations:

const std = @import ("std");
test "expect addOne adds one to 41" {

// The Standard Library contains useful functions to help
create tests.

// ‘expect’ is a function that verifies its argument is
true.

// It will return an error if its argument is false to
indicate a failure.

// “try' is used to return an error to the test runner to
notify it that the test failed.

try std.testing.expect (addOne (41) == 42);
}

test addOne {
// A test name can also be written using an identifier.
try std.testing.expect (addOne (41) == 42);

}

/// The function ‘addOne’ adds one to the number given as its
argument.
fn addOne (number: i32) i32 {

return number + 1;

}
testing_introduction.zig

S zig test testing introduction.zig

1/2 test.expect addOne adds one to 41... OK
2/2 decltest.addOne... OK

All 2 tests passed.

Shell

The testing introduction.zig code sample tests the function addone to ensure that it
returns 42 given the input 41. From this test's perspective, the addone function is said to
be code under test.

zig test is a tool that creates and runs a test build. By default, it builds and runs an
executable program using the default test runner provided by the Zig Standard Library as
its main entry point. During the build, test declarations found while resolving the given Zig
source file are included for the default test runner to run and report on.

This documentation discusses the features of the default test runner as provided by the Zig
Standard Library. Its source code is located in 1ib/test runner.zig.

The shell output shown above displays two lines after the zig test command. These lines
are printed to standard error by the default test runner:

Test [1/2] test.expect addOne adds one to 41...
Lines like this indicate which test, out of the total number of tests, is being run. In
this case, [1/2] indicates that the first test, out of a total of two test, is being run.
Note that, when the test runner program's standard error is output to the terminal,
these lines are cleared when a test succeeds.

Test [2/2] decltest.addOne...
When the test name is an identifier, the default test runner uses the text decltest
instead of test.

All 2 tests passed.
This line indicates the total number of tests that have passed.

Test Declarations §

Test declarations contain the keyword test, followed by an optional name written as a
string literal or an identifier, followed by a block containing any valid Zig code that is
allowed in a function.

By convention, non-named tests should only be used to make other tests run. Non-named
tests cannot be filtered.

Test declarations are similar to Functions: they have a return type and a block of code. The
implicit return type of test is the Error Union Type anyerror!void, and it cannot be

changed. When a Zig source file is not built using the zig test tool, the test declarations
are omitted from the build.

Test declarations can be written in the same file, where code under test is written, or in a
separate Zig source file. Since test declarations are top-level declarations, they are order-
independent and can be written before or after the code under test.

See also:

o The Global Error Set
e Grammar

Nested Container Tests §

When the zig test toolis building a test runner, only resolved test declarations are
included in the build. Initially, only the given Zig source file's top-level declarations are
resolved. Unless nested containers are referenced from a top-level test declaration, nested
container tests will not be resolved.

The code sample below uses the std.testing.refAllDecls (@This ()) function call to
reference all of the containers that are in the file including the imported Zig source file. The
code sample also shows an alternative way to reference containers using the = c;
syntax. This syntax tells the compiler to ignore the result of the expression on the right side
of the assignment operator.

const std = @import ("std");
const expect = std.testing.expect;

// Imported source file tests will run when referenced from a
top-level test declaration.

// The next line alone does not cause

"testing introduction.zig" tests to run.

const imported file = @import ("testing introduction.zig");

test {

// To run nested container tests, either, call
‘refAllDecls” which will

// reference all declarations located in the given
argument.

// "@This () is a builtin function that returns the
innermost container it is called from.

// In this example, the innermost container is this file
(implicitly a struct).

std.testing.refAllDecls (@This());

// or, reference each container individually from a top-
level test declaration.
// The °_ = C;' syntax is a no-op reference to the
identifier “C°
_ =6
_=U
@import ("testing introduction.zig");

const S = struct {
test "S demo test" {
try expect (true);

const SE = enum {
v,

// This test won't run because its container (SE) is
not referenced.
test "This Test Won't Run" {
try expect (false);

}i
}i

const U = union { // U is referenced by the file's top-level
test declaration

s: US, // and US is referenced here; therefore,
"U.Us demo test" will run

const US = struct ({
test "U.US demo test" {
// This test is a top-level test declaration for
the struct.
// The struct is nested (declared) inside of a
union.
try expect (true);

}i

test "U demo test" {
try expect (true);

}i
testing_nested container_tests.zig

$ zig test testing nested container tests.zig

1/5 test 0... OK

2/5 test.S demo test... OK

3/5 test.U demo test... OK

4/5 test.expect addOne adds one to 41... OK
5/5 decltest.addOne... OK

All 5 tests passed.

Shell

Test Failure §

The default test runner checks for an error returned from a test. When a test returns an
error, the test is considered a failure and its error return trace is output to standard error.
The total number of failures will be reported after all tests have run.

const std = @import ("std");

test "expect this to fail" {
try std.testing.expect (false);
}

test "expect this to succeed" ({
try std.testing.expect (true);
}

testing_failure.zig

S zig test testing failure.zig
1/2 test.expect this to fail... FAIL (TestUnexpectedResult)
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/testing.zig:515:14: 0x22425f in
expect (test)

if (!'ok) return error.TestUnexpectedResult;

/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/testing failure.zig:4:5: 0x224375 in
test.expect this to fail (test)

try std.testing.expect (false);

2/2 test.expect this to succeed... OK

1 passed; 0 skipped; 1 failed.

error: the following test command failed with exit code 1:
/home/ci/actions-runner/ work/zig-bootstrap/out/zig-local-
cache/o/d4ffa468bf575e495decfla50d3bbedd/test

Shell

Skip Tests §

One way to skip tests is to filter them out by using the zig test command line parameter
-—test-filter [text]. This makes the test build only include tests whose name contains
the supplied filter text. Note that non-named tests are run even when using the --test-
filter [text] command line parameter.

To programmatically skip a test, make a test return the error error.skipzigTest and the
default test runner will consider the test as being skipped. The total number of skipped
tests will be reported after all tests have run.

test "this will be skipped" {
return error.SkipZigTest;

}

testing_skip.zig

$ zig test testing skip.zig

1/1 test.this will be skipped... SKIP

0 passed; 1 skipped; 0 failed.

Shell

Report Memory Leaks §

When code allocates Memory using the Zig Standard Library's testing allocator,
std.testing.allocator, the default test runner will report any leaks that are found from
using the testing allocator:

const std = @import ("std");

test "detect leak" {
var list = std.ArrayList(u2l).init(std.testing.allocator);
// missing ‘defer list.deinit();’

try list.append('#');

try std.testing.expect(list.items.len == 1);

testing_detect leak.zig

S zig test testing detect leak.zig
1/1 test.detect leak... OK
[gpal (err): memory address 0x7f£2a48e13000 leaked:
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/array list.zig:403:67: 0x234cde
in ensureTotalCapacityPrecise (test)

const new_memory = try
self.allocator.alignedAlloc (T, alignment, new_capacity);

N

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/array list.zig:379:51: 0x22b0e4
in ensureTotalCapacity (test)

return
self.ensureTotalCapacityPrecise (better capacity);
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/array list.zig:426:41: 0x228890
in addOne (test)

try self.ensureTotalCapacity(self.items.len + 1);
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/array list.zig:207:49: 0x22464d
in append (test)

const new item ptr = try self.addOne();
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/testing detect leak.zig:6:20:
0x224572 in test.detect leak (test)

try list.append('#');
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x232319 in
mainTerminal (test)
} else test fn.func();
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:36:28: 0x22917a in
main (test)
return mainTerminal () ;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x224b62 in
posixCallMainAndExit (test)

root.main () ;

A~

All 1 tests passed.

1 errors were logged.

1 tests leaked memory.

error: the following test command failed with exit code 1:
/home/ci/actions-runner/ work/zig-bootstrap/out/zig-local-
cache/o/54fbcd2f75b6acb5afd27acacl2a6446/test

Shell

See also:

o defer
e Memory

Detecting Test Build §

Use the compile variable @import ("builtin") .is test to detect a test build:

const std = @import ("std");
const builtin = @import ("builtin");
const expect = std.testing.expect;

test "builtin.is test" {
try expect (isATest());
}

fn isATest () bool {
return builtin.is test;

}
testing_detect_test.zig

$ zig test testing detect test.zig
1/1 test.builtin.is test... OK
All 1 tests passed.

Shell

Test Output and Logging §

The default test runner and the Zig Standard Library's testing namespace output messages
to standard error.

The Testing Namespace §

The Zig Standard Library's testing namespace contains useful functions to help you
create tests. In addition to the expect function, this document uses a couple of more
functions as exemplified here:

const std = @import ("std");

test "expectEqual demo" {
const expected: 132 = 42;
const actual = 42;

// The first argument to ‘“expectEqual’ is the known,
expected, result.

// The second argument is the result of some expression.

// The actual's type is casted to the type of expected.

try std.testing.expectEqual (expected, actual);

test "expectError demo" {
const expected error = error.DemoError;
const actual error union: anyerror!void = error.DemoError;

// “expectError’ will fail when the actual error is
different than

// the expected error.

try std.testing.expectError (expected error,
actual_error_union);

}

testing_namespace.zig

S zig test testing namespace.zig
1/2 test.expectEqual demo... OK
2/2 test.expectError demo... OK
All 2 tests passed.

Shell
The Zig Standard Library also contains functions to compare Slices, strings, and more. See

the rest of the std.testing namespace in the Zig Standard Library for more available
functions.

Test Tool Documentation §

zig test has a few command line parameters which affect the compilation. See zig test
--help for a full list.

Variables §

Avariable is a unit of Memory storage.

It is generally preferable to use const rather than var when declaring a variable. This
causes less work for both humans and computers to do when reading code, and creates
more optimization opportunities.

Identifiers §

Variable identifiers are never allowed to shadow identifiers from an outer scope.

Identifiers must start with an alphabetic character or underscore and may be followed by
any number of alphanumeric characters or underscores. They must not overlap with any

keywords. See Keyword Reference.

If a name that does not fit these requirements is needed, such as for linking with external
libraries, the @"" syntax may be used.

const @"identifier with spaces in it" = 0Oxff;
const @"lSmallStep4Man" = 112358;

const ¢ = @import ("std").c;

pub extern "c" fn @"error" () void;

pub extern "c" fn @"fstat$INODE64" (fd: c.fd t, buf: *c.Stat)
c int;

const Color = enum {
red,
@"really red",

bi

const color: Color = .Q@"really red";

identifiers.zig

Container Level Variables §

Container level variables have static lifetime and are order-independent and lazily analyzed.
The initialization value of container level variables is implicitly comptime. If a container
level variable is const then its value is comptime-known, otherwise it is runtime-known.

var y: 132 = add (10, x);
const x: 132 = add(12, 34);

test "container level variables" {
try expect (x == 46);
try expect(y == 56);

}

fn add(a: 132, b: 1i32) i32 {
return a + b;

}

const std = @import ("std");
const expect = std.testing.expect;

test_container_level variables.zig
S zig test test_container level variables.zig
1/1 test.container level variables... OK

All 1 tests passed.

Shell

Container level variables may be declared inside a struct, union, enum, or opaque:

const std = @import ("std");
const expect = std.testing.expect;

test "namespaced container level variable" {
try expect (foo() == 1235);
try expect (foo() == 1236);

const S = struct {
var x: 132 = 1234;
}i

fn foo () i32 {
S.x += 1;
return S.x;

}
test namespaced container level variable.zig

S zig test test namespaced_container level variable.zig
1/1 test.namespaced container level variable... OK
All 1 tests passed.

Shell

Static Local Variables §

It is also possible to have local variables with static lifetime by using containers inside
functions.

const std = @import ("std");
const expect = std.testing.expect;

test "static local variable" {
try expect (foo() == 1235);
try expect (foo() == 1236);
}

fn foo() 132 {
const S = struct {
var x: 132 = 1234;
}i
S.x += 1;
return S.x;

}

test_static_local variable.zig

$ zig test test static local variable.zig
1/1 test.static local variable... OK

All 1 tests passed.

Shell

The extern keyword or @extern builtin function can be used to link against a variable that
is exported from another object. The export keyword or @export builtin function can be
used to make a variable available to other objects at link time. In both cases, the type of the
variable must be C ABI compatible.

See also:

e Exporting a C Library

Thread Local Variables §

A variable may be specified to be a thread-local variable using the threadlocal keyword,
which makes each thread work with a separate instance of the variable:

const std = @import ("std");
const assert = std.debug.assert;

threadlocal var x: 132 = 1234;

test "thread local storage" {
const threadl = try std.Thread.spawn(.{}, testTls, .{});
const thread2 = try std.Thread.spawn(.{}, testTls, .{});
testTls ()
threadl.join() ;
thread2.join() ;

}

fn testTls () void ({

assert (x == 1234);
X += 1;
assert (x == 1235);

}

test_thread local variables.zig

S zig test test thread local variables.zig
1/1 test.thread local storage... OK

All 1 tests passed.

Shell

For Single Threaded Builds, all thread local variables are treated as regular Container Level
Variables.

Thread local variables may not be const.

Local Variables §

Local variables occur inside Functions, comptime blocks, and @clImport blocks.

When a local variable is const, it means that after initialization, the variable's value will not
change. If the initialization value of a const variable is comptime-known, then the variable
is also comptime-known.

Alocal variable may be qualified with the comptime keyword. This causes the variable's
value to be comptime-known, and all loads and stores of the variable to happen during
semantic analysis of the program, rather than at runtime. All variables declared in a
comptime expression are implicitly comptime variables.

const std = @import ("std");
const expect = std.testing.expect;

test "comptime vars" {

var x: 132 = 1;

comptime var y: 132 = 1;
x += 1;

y += 1;

try expect(x == 2);

try expect(y == 2);

if (y !'= 2) {
// This compile error never triggers because y is a
comptime variable,
// and so 'y != 2° is a comptime value, and this if is
statically evaluated.
QcompileError ("wrong y value");
}
}

test_comptime_variables.zig
$ zig test test comptime variables.zig
1/1 test.comptime vars... OK

All 1 tests passed.

Shell

Integers §

Integer Literals §

const decimal int = 98222;
const hex_int = O0xff;

const another hex int = OxFF;
const octal int = 00755;

const binary int = 0b11110000;

// underscores may be placed between two digits as a visual
separator

const one billion = 1 000 000 000;

const binary mask = Obl_ 1111 1111;

const permissions = 007 5 5;

const big_address = OxFF80_0000_0000_0000;

integer_literals.zig

Runtime Integer Values §

Integer literals have no size limitation, and if any undefined behavior occurs, the compiler
catches it.

However, once an integer value is no longer known at compile-time, it must have a known
size, and is vulnerable to undefined behavior.

fn divide(a: 132, b: i32) 132 {
return a / b;

}
runtime_vs_comptime.zig

In this function, values a and b are known only at runtime, and thus this division operation
is vulnerable to both Integer Overflow and Division by Zero.

Operators such as + and - cause undefined behavior on integer overflow. Alternative
operators are provided for wrapping and saturating arithmetic on all targets. +% and -%
perform wrapping arithmetic while +| and - | perform saturating arithmetic.

Zig supports arbitrary bit-width integers, referenced by using an identifier of i or u
followed by digits. For example, the identifier i7 refers to a signed 7-bit integer. The
maximum allowed bit-width of an integer type is 65535. For signed integer types, Zig uses
a two's complement representation.

See also:

e Wrapping Operations

Floats §

Zig has the following floating point types:

e £16 - [EEE-754-2008 binary16

e £32 - [EEE-754-2008 binary32

e £64 - [EEE-754-2008 binary64

e £380 - IEEE-754-2008 80-bit extended precision

e £128 - IEEE-754-2008 binary128

e c longdouble - matches long double for the target C ABI

Float Literals §

Float literals have type comptime float which is guaranteed to have the same precision
and operations of the largest other floating point type, which is £128.

Float literals coerce to any floating point type, and to any integer type when there is no
fractional component.

https://en.wikipedia.org/wiki/Two's_complement

const floating point = 123.0E+77;
const another float = 123.0;
const yet another = 123.0e+77;

const hex floating point = 0x103.70p-5;
const another hex float = 0x103.70;
const yet another hex float = 0x103.70P-5;

// underscores may be placed between two digits as a visual
separator

const lightspeed = 299 792 458.000 000;

const nanosecond = 0.000 000 001;

const more hex = 0x1234 5678.9ABC CDEFp-10;

float_literals.zig

There is no syntax for NaN, infinity, or negative infinity. For these special values, one must
use the standard library:

const std = @import ("std");
const inf = std.math.inf (£32);
const negative inf = -std.math.inf (f64);

const nan = std.math.nan(£128);

float special values.zig

Floating Point Operations §

By default floating point operations use strict mode, but you can switch to optimized
mode on a per-block basis:

const std Q@import ("std") ;
const big = @as(f64, 1 << 40);

export fn foo strict(x: £64) f64 {
return x + big - big;

}
export fn foo optimized(x: £64) f64 {
@setFloatMode (.Optimized) ;

return x + big - big;

}
float mode obj.zig
$ zig build-obj float mode obj.zig -O ReleaseFast

Shell

For this test we have to separate code into two object files - otherwise the optimizer
figures out all the values at compile-time, which operates in strict mode.

const print = Qimport ("std") .debug.print;

extern fn foo strict(x: f64) f64;
extern fn foo optimized(x: f64) f64;

pub fn main() void {
const x = 0.001;
print ("optimized = {}\n", .{foo_optimized(x)});
print ("strict = {}\n", .{foo_strict(x)});

}

float mode_exe.zig

S zig build-exe float mode exe.zig float mode obj.o
$./float_mode_exe

optimized = 9.765625e-04

strict = 9.765625e-04

Shell

See also:

e (@setFloatMode

e Division by Zero

Operators §

There is no operator overloading. When you see an operator in Zig, you know that it is

doing something from this table, and nothing else.

Table of Operators §

Table of Operators

Relevant
Types

Syntax

Description

a+b e Integers
e Floats

a+% b
a +%=b

a+| b
a +|=b

a-|b

e Integers

e Integers

- b e Integers
b e Floats

e Integers

e Integers

Addition.

e Can cause overflow
for integers.

e Invokes Peer Type
Resolution for the
operands.

e See also

(@addWithOverflow.

Wrapping Addition.

e Guaranteed to have
twos-complement
wrapping behavior.

e Invokes Peer Type
Resolution for the
operands.

e Sce also

(@addWithOverflow.

Saturating Addition.

e Invokes Peer Type
Resolution for the
operands.

Subtraction.

e Can cause overflow
for integers.

e Invokes Peer Type
Resolution for the
operands.

e See also

@subWithOverflow.

Wrapping Subtraction.

e Guaranteed to have
twos-complement
wrapping behavior.

e Invokes Peer Type
Resolution for the
operands.

e Sce also

(@subWithOverflow.

Saturating Subtraction.

e Invokes Peer Type

2 +5==7

@as (u32, std.math.ma:

@as (u32, std.math.ma:

2 -5==-3

@as(u32, 0) -% 1 == .

@as(u32, 0) -1 1

a -1= b

Syntax Relevant

Types

Resolution for the

opBresckiption

e Integers

s e Floats

-%a °

Integers

Integers
e Floats

Negation.

e (Can cause overflow
for integers.

Wrapping Negation.

e Guaranteed to have
twos-complement
wrapping behavior.

Multiplication.

e (Can cause overflow
for integers.

e Invokes Peer Type
Resolution for the

a *% b

A Com 1 e Integers

a*| b

a *l= b e Integers

e Integers
e Floats

~

L)
~N
I

operands.
e See also

(@mulWithOverflow.

Wrapping Multiplication.

e Guaranteed to have
twos-complement
wrapping behavior.

e Invokes Peer Type
Resolution for the
operands.

e Sece also

(@mulWithOverflow.

Saturating Multiplication.

e Invokes Peer Type
Resolution for the
operands.

Division.

e Can cause overflow
for integers.

e (Can cause Division
by Zero for integers.

e (Can cause Division
by Zero for floats in
FloatMode.Optimized
Mode.

e Signed integer
operands must be
comptime-known
and positive. In other
cases, use
(@divTrunc,
(@divFloor, or
(@divExact instead.

e Invokes Peer Type
Resolution for the
operands.

Remainder Division.

e (Can cause Division

1 el ~

-1==0-1

-%Q@as (132,

2 x5 ==10

@as(u8, 200

@as (u8, 200

10 / 5 ==

std.math.:

) *$ 2 ==

) *

Syntax

Relevant
Types

DYy ZETO 10T MICZeTS.
o Capeseriptidinision
by Zero for floats in

a<<b
a <<= b

a <| b
a <<L|=b

a>b
a >»>=Db

L)
e v

oy
oo

>
1]

~a

a orelse b

e Integers
e Floats

e Integers

e Integers

e Integers

e Integers

e Integers

e Integers

e Integers

e Optionals

FloatMode.Optimized
Mode.

e Signed or floating-
point operands must
be comptime-known
and positive. In other
cases, use (@rem or
(@mod instead.

e Invokes Peer Type
Resolution for the
operands.

Bit Shift Left.

e b must be comptime-
known or have a
type with log2
number of bits as a.

e See also @shlExact.

e See also

@shlWithOverflow.
Saturating Bit Shift Left.

e See also @shlExact.

e See also

@shlWithOverflow.
Bit Shift Right.

e b must be comptime-
known or have a
type with log2
number of bits as a.

e See also @shrExact.
Bitwise AND.

e Invokes Peer Type
Resolution for the
operands.

Bitwise OR.

e Invokes Peer Type
Resolution for the
operands.

Bitwise XOR.

e Invokes Peer Type
Resolution for the
operands.

Bitwise NOT.

If a is null, returns b
("default value"),
otherwise returns the
unwrapped value of a.
Note that b may be a
value of type noreturn.

10 % 3 ==

1 << 8 == 256

@as (u8, 1) <<| 8 ==

10 >> 1 == 5

0b011 & 0bl01l == 0bO

0b010 0bl100 == Obl

O0b011 ~ 0bl01l == 0Obl

~@as (u8, 0010101111)

const value: ?u32 =
const unwrapped = va.
unwrapped == 1234

Equivalent to:

Relevant P const value: ?u32 =
Syntax i Description s
e ° na a orelse unll_zeachable value.? == 5678
If a is an error, returns
b ("default value"),
otherwise returns the
e Error unwrapped value of a. const value: anyerro:
a catch b s Note that b may be a const unwrapped = va
Q) @z o 2o Unions value of type noreturn ELFEI] == A28
err is the error and is in
scope of the expression
b.
If a is false, returns
a and b e bool false without evaluating (false and true) ==
b. Otherwise, returns b.
If a is true, returns
aorb e bool true without evaluating (false or true) ==t
b. Otherwise, returns b.
la e bool Boolean NOT. !false == true
o Integers Returns true if a and b
AMESCIS e equal, otherwise
e Floats
a==>b e bool returns false. Invokes (1 ==/ 1) == true
. : Peer Type Resolution for
Lpe the operands.
Returns true if a is
Onti s h . const value: ?2u32 =
a == null e Optionals null, otherwise returns value == null
false.
e Tntesers Returns falseifaand b
. _g_Floats are equal, otherwise
a!=b e bool returns true. Invokes (1 !'=1) == false
. : Peer Type Resolution for
~pe the operands.
Returns true if a is
o Inteoers Sreater than b, otherwise
a>b _g_Floats returns false. Invokes (2 > 1) == true
I— Peer Type Resolution for
the operands.
Returns true if a is
greater than or equal to
IS e Integers b, otherwise returns (2 >= 1) = true
e Floats false. Invokes Peer
Type Resolution for the
operands.
Returns true if a is less
o — than b, otherwise returns
a<b R _g_Floats false. Invokes Peer (1 < 2) == true>
— Type Resolution for the
operands.
Returns true if a is less
than or equal to b,
R .
A s Integers otherwise returns false. (1 <= 2) == true
e Floats Invokes Peer Type
Resolution for the
operands.
Array concatenation.
. const mem = Qimport (
e Only available when const arrayl = [Ju3
a++b e Arrays the lengths of both a const array2 = [_]Ju3
and b are com]gile- const together = arr:
mem.eql (u32, &togeth:s

time known.

Relevant

——Syptax— Description
Types Array muftlp gatlon.
e Only available when const mem = @import (
a ** b e Arrays the length of 2 and b const pattern = "ab"
areccnnpﬂeJhne mem.eql (u8, pattern,
known.
const x: u32 = 1234;
a.* e Pointers Pointer dereference. const ptr = &x;
ptr.* == 1234
const x: u32 = 1234;
sa All types Address of. const ptr = &x;
ptr.* == 1234
t A = error{One}
e FError Set . cons
al|lb ~— — Merging Error Sets const B = error{Two}
Type (A || B) == error{On
Kl | >l
Precedence §
x() x[] x.y x.* x.?
al'b
x{}
IX =x —-%X ~X &X ?X
* / % * Kk *% *‘
+ - ++ +% =% +|
<< >> <<|
& ~ | orelse catch
= =< > <= >=
and
or
= k= *%= ¥ |= /= §= 4= +%= +|= -= -%= —|= <<= << |= >>= &= "= |=

Arrays §

const expect
const assert

const mem

= @import ("std") .testing.expect;
= Q@import ("std") .debug.assert;

@import ("std") .mem;

// array literal

const message = [

Jud{ 'h',

// get the size of an array

comptime {

assert (message.len == 5);

}

// A string literal is a single-item pointer to an array.

const same_message =

comptime {
assert (mem.eql (u8,

}

"hello";

&message, same message));

test "iterate over an array" {

var sum:
(message)

for

usize = 0;
Ibyte| {

sum += byte;

}

try expect (sum ==

}

Th! + 'e' + '1' * 2 4+ 'o');

// modifiable array

var some integers:

[100]i32 = undefined;

test "modify an array" {

for (&some integers, 0..)

|*item, 1i| {

item.* = @intCast(1i);
}
try expect (some integers([10] == 10);
try expect (some integers[99] == 99);
}

// array concatenation works if the values are known
// at compile time
const part one = [1i32{ 1, 2, 3, 4 };
const part two = [1i32{ 5, 6, 7, 8 };
const all of it = part one ++ part two;
comptime {
assert (mem.eql (i32, &all of it, &[1i32{ 1, 2, 3, 4, 5,
7, 8 }))i
}

// remember that string literals are arrays

const hello = "hello";
const world = "world";
const hello world = hello ++ " " ++ world;

comptime {
assert (mem.eql (u8, hello world, "hello world"));
}

// ** does repeating patterns
const pattern = "ab" ** 3;
comptime {
assert (mem.eql (u8, pattern, "ababab")):;

}

// initialize an array to zero
const all zero = [_Jul6{0} ** 10;

comptime {
assert (all_zero.len == 10);
assert(all_zero[5] == 0);

}

// use compile-time code to initialize an array
var fancy array = init: {
var initial value: [10]Point = undefined;
for (&initial value, 0..) |*pt, il {
pt.* = Point{
.x = @intCast (i),
.y = @intCast(i * 2),
bi
}
break :init initial value;
}i
const Point = struct {
28 alS2,
y: 132,
}i

test "compile-time array initialization" {
try expect(fancy arrayl[4].x == 4);
try expect(fancy arrayl[4].y == 8);

}

// call a function to initialize an array
var more points = [_]Point{makePoint(3)} ** 10;
fn makePoint (x: i32) Point {
return Point{
X = %,
Ly =x* 2,
}i
}
test "array initialization with function calls"™ {
try expect (more points[4].x == 3);
try expect (more points[4].y == 6);
try expect (more points.len == 10);

}

test_arrays.zig

$ zig test test arrays.zig

1/4 test.iterate over an array... OK

2/4 test.modify an array... OK

3/4 test.compile-time array initialization... OK

4/4 test.array initialization with function calls... OK

All 4 tests passed.

Shell
See also:

o for
e Slices

Multidimensional Arrays §

Multidimensional arrays can be created by nesting arrays:

const std = Qimport ("std");
const expect = std.testing.expect;

const matdx4 = [4]
[1£32{ 1.0, O
[1£32{ 0.0, 1
[1£32{ 0.0, O
[1£32{ 0.0, O

[41£32

’

41£3
0, 0
0, 0
0, 1
0, 0

{

0, be
0, e
0 by
0 }

’

’ ’

= or o
o o oo

Uy ULUy

}i
test "multidimensional arrays" {
// Access the 2D array by indexing the outer array, and
then the inner array.
try expect (mat4x4([1]([1] == 1.0);
// Here we iterate with for loops.
for (matédx4, 0..) |row, row index| {
for (row, 0..) |cell, column index| {
if (row index == column index) {

try expect (cell == 1.0);
}

}

test_multidimensional arrays.zig

$ zig test test multidimensional arrays.zig
1/1 test.multidimensional arrays... OK

All 1 tests passed.

Shell

Sentinel-Terminated Arrays §

The syntax [N:x]T describes an array which has a sentinel element of value x at the index
corresponding to len.

const std = Qimport ("std");
const expect = std.testing.expect;

test "null terminated array" {

const array = [_:0]u8 {1, 2, 3, 4};
try expect (@TypeOf (array) == [4:0]u8);
try expect (array.len == 4);

try expect (array[4] == 0);

}

test_null terminated array.zig

$ zig test test null terminated array.zig
1/1 test.null terminated array... OK

All 1 tests passed.

Shell

See also:

o Sentinel-Terminated Pointers
e Sentinel-Terminated Slices

Vectors §

Avector is a group of booleans, Integers, Floats, or Pointers which are operated on in
parallel, using SIMD instructions if possible. Vector types are created with the builtin

function (@ Vector.

Vectors support the same builtin operators as their underlying base types. These operations
are performed element-wise, and return a vector of the same length as the input vectors.
This includes:

e Arithmetic (+, -, /, *, @divFloor, @sqrt, @ceil, @log, etc.)
e Bitwise operators (>>, <<, s, |, ~, etc.)
e Comparison operators (<, >, ==, etc.)

It is prohibited to use a math operator on a mixture of scalars (individual numbers) and
vectors. Zig provides the @splat builtin to easily convert from scalars to vectors, and it
supports @reduce and array indexing syntax to convert from vectors to scalars. Vectors
also support assignment to and from fixed-length arrays with comptime-known length.

For rearranging elements within and between vectors, Zig provides the @shuffle and
(@select functions.

Operations on vectors shorter than the target machine's native SIMD size will typically
compile to single SIMD instructions, while vectors longer than the target machine's native
SIMD size will compile to multiple SIMD instructions. If a given operation doesn't have
SIMD support on the target architecture, the compiler will default to operating on each
vector element one at a time. Zig supports any comptime-known vector length up to 2"32-
1, although small powers of two (2-64) are most typical. Note that excessively long vector
lengths (e.g. 2°20) may result in compiler crashes on current versions of Zig.

const std = @import ("std");
const expectEqual = std.testing.expectEqual;

test "Basic vector usage" ({
// Vectors have a compile-time known length and base type.
const a = @Vector(4, i32){ 1, 2, 3, 4 };
const b = @Vector (4, i32){ 5, 6, 7, 8 };

// Math operations take place element-wise.
const ¢ = a + b;

// Individual vector elements can be accessed using array
indexing syntax.

try expectEqual (6, c[0]);
try expectEqual (8, c[1]);
try expectEqual (10, c[2]);
try expectEqual (12, c[3]);

test "Conversion between vectors, arrays, and slices" {

// Vectors and fixed-length arrays can be automatically
assigned back and forth

var arrl: [4]1f32 = [_]1f32{ 1.1, 3.2, 4.5, 5.6 };

var vec: QVector (4, £32) = arrl;

var arr2: [4]1f32 = vec;

try expectEqual (arrl, arr2);

// You can also assign from a slice with comptime-known
length to a vector using .*
const vec2: @Vector (2, £32) = arrl[1l..3].%*;

var slice: []Jconst f32 = garrl;

var offset: u32 = 1;

// To extract a comptime-known length from a runtime-known
offset,

// first extract a new slice from the starting offset,
then an array of

// comptime-known length

const vec3: @Vector (2, £32) = sliceloffset..][0..2].%;

try expectEqual (slice[offset], vec2[0]);

try expectEqual (sliceloffset + 1], vec2[l1]);

try expectEqual (vec2, vec3);

}

test_vector.zig

$ zig test test vector.zig

1/2 test.Basic vector usage... OK

2/2 test.Conversion between vectors, arrays, and slices... OK

All 2 tests passed.

Shell

TODO talk about C ABI interop
TODO consider suggesting std. MultiArrayList

See also:

(@splat
@shuffle
(@select
(@reduce

Pointers §

Zig has two kinds of pointers: single-item and many-item.

e *T - single-item pointer to exactly one item.

o Supports deref syntax: ptr.*

[*]1T - many-item pointer to unknown number of items.
o Supports index syntax: ptr[i]

o Supports slice syntax: ptr[start..end

o Supports pointer arithmetic: ptr + x, ptr - x

o T must have a known size, which means that it cannot be anyopaque or any other
opaque type.

These types are closely related to Arrays and Slices:

e *[N]T - pointer to N items, same as single-item pointer to an array.
o Supports index syntax: array ptrli]
o Supports slice syntax: array ptr[start..end]
o Supports len property: array ptr.len

e []T - is aslice (a fat pointer, which contains a pointer of type [*]1T and a length).
o Supports index syntax: slice[i]
o Supports slice syntax: slice[start..end]
o Supports len property: slice.len

Use sx to obtain a single-item pointer:
const expect = @import ("std").testing.expect;

test "address of syntax" {
// Get the address of a variable:
const x: 132 = 1234;
const x_ptr = &x;

// Dereference a pointer:
try expect(x ptr.* == 1234);

// When you get the address of a const variable, you get a
const single-item pointer.
try expect (@TypeOf (x_ptr) == *const 132);

// 1If you want to mutate the value, you'd need an address
of a mutable variable:

var y: 132 = 5678;

const y_ptr = &y;

try expect (@TypeOf (y_ptr) == *i32);

y_ptr.* += 1;

try expect(y_ptr.* == 5679);
}

test "pointer array access" {
// Taking an address of an individual element gives a
// single-item pointer. This kind of pointer
// does not support pointer arithmetic.

var array = [_Ju8{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
const ptr = &arrayl[2];

try expect (@TypeOf (ptr) == *u8);

try expect (array([2] == 3);

ptr.* += 1;

try expect (array([2] == 4);

}

test_single item_pointer.zig

S zig test test single item pointer.zig
1/2 test.address of syntax... OK

2/2 test.pointer array access... OK
All 2 tests passed.

Shell

Zig supports pointer arithmetic. It's better to assign the pointer to [*]T and increment that
variable. For example, directly incrementing the pointer from a slice will corrupt it.

const expect = @import ("std").testing.expect;

test "pointer arithmetic with many-item pointer™ {
const array = []1i32{ 1, 2, 3, 4 };
var ptr: [*]const 132 = g&array;

try expect (ptr[0] == 1);
ptr += 1;
try expect (ptr[0] == 2);

test "pointer arithmetic with slices" {
var array = [1i32{(1, 2, 3, 4 };
var length: usize = 0;
var slice = arrayl[length..array.len];

try expect(slice[0] == 1);
try expect(slice.len == 4);

slice.ptr += 1;
// now the slice is in an bad state since len has not been
updated

try expect(slice[0] == 2);
try expect(slice.len == 4);

}

test_pointer arithmetic.zig

S zig test test pointer arithmetic.zig

1/2 test.pointer arithmetic with many-item pointer... OK
2/2 test.pointer arithmetic with slices... OK

All 2 tests passed.

Shell

In Zig, we generally prefer Slices rather than Sentinel-Terminated Pointers. You can turn an
array or pointer into a slice using slice syntax.

Slices have bounds checking and are therefore protected against this kind of undefined
behavior. This is one reason we prefer slices to pointers.

const expect = @import ("std").testing.expect;

test "pointer slicing" {
var array = [_Ju8{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
var start: usize = 2;
const slice = arrayl[start..4];
try expect(slice.len == 2);

try expect (array[3] == 4);
slice[l] += 1;
try expect (array[3] == 5);

}

test_slice_bounds.zig

S zig test test slice bounds.zig
1/1 test.pointer slicing... OK

All 1 tests passed.

Shell

Pointers work at compile-time too, as long as the code does not depend on an undefined
memory layout:

const expect = @import ("std").testing.expect;

test "comptime pointers" {
comptime {

var x: 132 = 1;
const ptr = &x;
ptr.* += 1;

x += 1;

try expect(ptr.* == 3);

test_comptime_pointers.zig

S zig test test comptime pointers.zig
1/1 test.comptime pointers... OK
All 1 tests passed.

Shell

To convert an integer address into a pointer, use @ptrFromInt. To convert a pointer to an
integer, use @intFromPtr:

const expect = @import ("std").testing.expect;

test "@intFromPtr and @ptrFromInt" ({
const ptr: *i32 = @ptrFromInt (OxdeadbeeO) ;
const addr = @intFromPtr (ptr);
try expect (@TypeOf (addr) == usize);
try expect (addr == Oxdeadbeel) ;
}

test_integer pointer conversion.zig

$ zig test test integer pointer conversion.zig
1/1 test.@intFromPtr and @ptrFromInt... OK
All 1 tests passed.

Shell

Zig is able to preserve memory addresses in comptime code, as long as the pointer is never
dereferenced:

const expect = @import ("std").testing.expect;

test "comptime @ptrFromInt" {
comptime {
// Zig is able to do this at compile-time, as long as
// ptr is never dereferenced.
const ptr: *i32 = @ptrFromInt (Oxdeadbeel) ;
const addr = @intFromPtr (ptr);
try expect (QTypeOf (addr) == usize);
try expect (addr == OxdeadbeeO) ;

}
test_comptime pointer conversion.zig
$ zig test test comptime pointer conversion.zig

1/1 test.comptime @ptrFromInt... OK
All 1 tests passed.

Shell
See also:

o Optional Pointers
e (@ptrFromint
o (@intFromPtr

e (C Pointers

volatile §

Loads and stores are assumed to not have side effects. If a given load or store should have
side effects, such as Memory Mapped Input/Output (MMIO), use volatile. In the
following code, loads and stores with mmio ptr are guaranteed to all happen and in the
same order as in source code:

const expect = @import ("std").testing.expect;

test "volatile" {
const mmio ptr: *volatile u8 = @ptrFromInt (0x12345678);
try expect (@TypeOf (mmio ptr) == *volatile u8);

}

test_volatile.zig

$ zig test test volatile.zig
1/1 test.volatile... OK
All 1 tests passed.

Shell

Note that volatile is unrelated to concurrency and Atomics. If you see code that is using
volatile for something other than Memory Mapped Input/Output, it is probably a bug.

To convert one pointer type to another, use @ptrCast. This is an unsafe operation that Zig
cannot protect you against. Use @ptrCast only when other conversions are not possible.

const std = @import ("std");
const expect = std.testing.expect;

test "pointer casting” {

const bytes align(@alignOf(u32)) = [_Ju8{ 0x12, 0x12,
0x12, 0x12 };

const u32 ptr: *const u32 = @ptrCast (sbytes);

try expect (u32_ptr.* == 0x12121212);

// Even this example is contrived - there are better ways
to do the above than

// pointer casting. For example, using a slice narrowing
cast:

const u32 value = std.mem.bytesAsSlice(u32, bytes[0..])
[01;

try expect (u32_value == 0x12121212);

// And even another way, the most straightforward way to
do it:

try expect (@as (u32, @bitCast (bytes)) == 0x12121212);
}

test "pointer child type" {

// pointer types have a ‘child' field which tells you the
type they point to.

try expect (@typeInfo (*u32).Pointer.child == u32);
}

test_pointer casting.zig

S zig test test pointer casting.zig
1/2 test.pointer casting... OK

2/2 test.pointer child type... OK
All 2 tests passed.

Shell

Alignment §

Each type has an alignment - a number of bytes such that, when a value of the type is
loaded from or stored to memory, the memory address must be evenly divisible by this
number. You can use @alignOf to find out this value for any type.

Alignment depends on the CPU architecture, but is always a power of two, and less than 1
<< 29.

In Zig, a pointer type has an alignment value. If the value is equal to the alignment of the
underlying type, it can be omitted from the type:

const std = @import ("std");
const builtin = @import ("builtin");
const expect = std.testing.expect;

test "variable alignment"” {
var x: 132 = 1234;
const align of i32 = @alignOf (@TypeOf (x));

try expect (@TypeOf (&x) == *i32);
try expect (*i32 == *align(align of i32) 1i32);
if (builtin.target.cpu.arch == .x86 64) {

try expect (@typeInfo(*i32) .Pointer.alignment == 4);

test_variable alignment.zig

$ zig test test variable alignment.zig
1/1 test.variable alignment... OK

All 1 tests passed.

Shell

In the same way that a 132 can be coerced to a *const 132, a pointer with a larger
alignment can be implicitly cast to a pointer with a smaller alignment, but not vice versa.

You can specify alignment on variables and functions. If you do this, then pointers to them
get the specified alignment:

const expect = @import ("std").testing.expect;
var foo: u8 align(4) = 100;

test "global variable alignment" {
try expect (@typeInfo (@TypeOf (&foo)) .Pointer.alignment ==

4);
try expect (@TypeOf (&foo) == *align(4) u8);
const as_pointer to_array: *align(4) [1]u8 = &foo;
const as_slice: []align(4) u8 = as_pointer to_array;
const as_unaligned slice: [Ju8 = as slice;
try expect(as _unaligned slice[0] == 100);

}

fn derp() align(@sizeOf (usize) * 2) 132 {
return 1234;

}

fn noopl() align(l) void {}

fn noop4 () align(4) void {}

test "function alignment" {

try expect (derp() == 1234);

try expect (@TypeOf (noopl) == fn () align(l) void);
try expect (@TypeOf (noop4) == fn () align(4) void);
noopl () ;

noop4 () ;

}

test_variable_func_alignment.zig

$ zig test test variable func alignment.zig
1/2 test.global variable alignment... OK
2/2 test.function alignment... OK

All 2 tests passed.

Shell

If you have a pointer or a slice that has a small alignment, but you know that it actually has
a bigger alignment, use @alignCast to change the pointer into a more aligned pointer. This
is a no-op at runtime, but inserts a safety check:

const std = Qimport ("std");

test "pointer alignment safety" {

var array align(4) = [_Ju32{ 0x11111111, 0x11111111 };
const bytes = std.mem.sliceAsBytes(array[0..]);
try std.testing.expect (foo (bytes) == 0x11111111);

}
fn foo(bytes: [Ju8) u32 {

const slice4 = bytes[l..5];

const int slice = std.mem.bytesAsSlice(u32, Ras([]align(4)
u8, @alignCast(sliced)));

return int slice[0];

}

test_incorrect pointer_alignment.zig

$ zig test test incorrect pointer alignment.zig
1/1 test.pointer alignment safety... thread 2451744 panic:
incorrect alignment
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test incorrect pointer alignment.zig:
0x2244df in foo (test)

const int slice = std.mem.bytesAsSlice(u32, Ras([]align(4)

u8, @alignCast(sliced)));

~

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/test incorrect pointer alignment.zig:
0x2243cf in test.pointer alignment safety (test)
try std.testing.expect (foo (bytes) == 0x11111111);
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x22dlc9 in
mainTerminal (test)

} else test_ fn.func();
/home/ci/actions-runner/_work/zig-
bootstrap/out/host/1lib/zig/test_runner.zig:36:28: 0x22542a in
main (test)

return mainTerminal () ;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x2249c2 in
posixCallMainAndExit (test)
root.main() ;

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x224511 in
_start (test)

asm volatile (switch (native_ arch) {

?2?2:2:2: 0x0 in 22?2 (2?2272)

error: the following test command crashed:
/home/ci/actions-runner/ work/zig-bootstrap/out/zig-local-
cache/0/d8194fb80clfbfe244b9£f4470745a%ae/test

1 [
Shell

allowzero §

This pointer attribute allows a pointer to have address zero. This is only ever needed on the
freestanding OS target, where the address zero is mappable. If you want to represent null
pointers, use Optional Pointers instead. Optional Pointers with allowzero are not the same
size as pointers. In this code example, if the pointer did not have the allowzero attribute,
this would be a Pointer Cast Invalid Null panic:

const std = Qimport ("std");
const expect = std.testing.expect;

test "allowzero" {

var zero: usize = 0;
var ptr: *allowzero 132 = @ptrFromInt (zero);
try expect (@intFromPtr (ptr) == 0);

}

test_allowzero.zig

$ zig test test allowzero.zig
1/1 test.allowzero... OK

All 1 tests passed.

Shell

Sentinel-Terminated Pointers §

The syntax [*:x]T describes a pointer that has a length determined by a sentinel value.
This provides protection against buffer overflow and overreads.

const std = @import ("std");

// This is also available as ‘std.c.printf’.
pub extern "c" fn printf (format: [*:0]const u8, ...) c int;

pub fn main() anyerror!void {
_ = printf("Hello, world!\n"); // OK

const msg = "Hello, world!\n";
const non null terminated msg: [msg.len]u8 = msg.*;
= printf(&non null terminated msg);

}
sentinel-terminated_pointer.zig

$ zig build-exe sentinel-terminated pointer.zig -lc
sentinel-terminated pointer.zig:11:16: error: expected type
'"[*:0]const u8', found '*const [14]u8'

_ = printf(&non_null_ terminated msg);
sentinel-terminated pointer.zig:11:16: note: destination
pointer requires '0O' sentinel
sentinel-terminated pointer.zig:4:35: note: parameter type
declared here
pub extern "c" fn printf (format: [*:0]const u8, ...) c_int;

referenced by:

callMain: /home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:574:32

initEventLoopAndCallMain: /home/ci/actions-
runner/_work/zig—
bootstrap/out/host/lib/zig/std/start.zig:508:34

remaining reference traces hidden; use '-freference-trace'
to see all reference traces

Shell
See also:

o Sentinel-Terminated Slices
e Sentinel-Terminated Arrays

Slices §

const expect = @import ("std").testing.expect;

test "basic slices" {

var array [1i32{ 1, 2, 3, 4 };

// A slice is a pointer and a length. The difference
between an array and

// a slice is that the array's length is part of the type
and known at

// compile-time, whereas the slice's length is known at
runtime.

// Both can be accessed with the “len’ field.

var known_at_ runtime zero: usize = 0;

const slice = arraylknown_at_ runtime_ zero..array.len];

try expect (@TypeOf (slice) == [1132);

try expect (&slice[0] == &array[0]);

try expect(slice.len == array.len);

// If you slice with comptime-known start and end
positions, the result is

// a pointer to an array, rather than a slice.

const array ptr = arrayl[0..array.len];

try expect (@TypeOf (array ptr) == *[array.len]i32);

// You can perform a slice-by-length by slicing twice.
This allows the compiler

// to perform some optimisations like recognising a
comptime-known length when

// the start position is only known at runtime.

var runtime_ start: usize = 1;

const length = 2;

const array ptr len = arrayl[runtime_ start..][0..length];
try expect (@TypeOf (array ptr len) == *[length]i32);

// Using the address-of operator on a slice gives a
single-item pointer,
// while using the ‘ptr’ field gives a many-item pointer.
try expect (QTypeOf (slice.ptr) == [*]1i32);
try expect (QTypeOf (&slice[0]) == *i32);
try expect (@intFromPtr (slice.ptr) ==
@intFromPtr (&slice[0]));

// Slices have array bounds checking. If you try to access
something out

// of bounds, you'll get a safety check failure:

slice[10] += 1;

// Note that “slice.ptr’ does not invoke safety checking,
while “&slice[0]°

// asserts that the slice has len > 0.
}

test_basic_slices.zig

$ zig test test basic slices.zig
1/1 test.basic slices... thread 2451814 panic: index out of
bounds: index 10, len 4
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test basic slices.zig:36:10: 0x224695
in test.basic slices (test)
slice[10] += 1;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x22da69 in
mainTerminal (test)
} else test fn.func();
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:36:28: 0x225bfa in
main (test)
return mainTerminal () ;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x224c92 in
posixCallMainAndExit (test)
root.main () ;
/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x2247el in
_start (test)
asm volatile (switch (native_arch) ({

?2?2:2:2: 0x0 in 22?2 (?227?)

error: the following test command crashed:
/home/ci/actions-runner/_ work/zig-bootstrap/out/zig-local-
cache/0/5549974cc24ed8e4b563851bcfbec010/test

Shell

This is one reason we prefer slices to pointers.

const std = @import ("std");

const expect = std.testing.expect;
const mem = std.mem;

const fmt = std.fmt;

test "using slices for strings" ({

// Zig has no concept of strings. String literals are
const pointers

// to null-terminated arrays of u8, and by convention
parameters

// that are "strings" are expected to be UTF-8 encoded
slices of u8.

// Here we coerce *const [5:0]u8 and *const [6:0]u8 to
[lconst u8

const hello: []lconst u8 = "hello";

const world: []Jconst u8 = "tHH";

var all_ together: [100]u8 = undefined;

// You can use slice syntax with at least one runtime-
known index on an

// array to convert an array into a slice.

var start : usize = 0;

const all together slice = all together([start..];

// String concatenation example.

const hello world = try fmt.bufPrint(all together slice, "
{s} {s}", .{ hello, world });

// Generally, you can use UTF-8 and not worry about
whether something is a

// string. If you don't need to deal with individual
characters, no need

// to decode.

try expect (mem.eql (u8, hello_world, "hello R ;

test "slice pointer" {
var a: []Ju8 = undefined;
try expect (QTypeOf (a) == []u8);
var array: [10]u8 = undefined;
const ptr = &array;
try expect (@TypeOf (ptr) == *[10]u8);

// A pointer to an array can be sliced just like an array:

var start: usize = 0;

var end: usize = 5;

const slice = ptr([start..end];

slice[2] = 3;

try expect(slice[2] == 3);

// The slice is mutable because we sliced a mutable
pointer.

try expect (@TypeOf (slice) == []u8);

// Again, slicing with comptime-known indexes will produce
another pointer

// to an array:

const ptr2 = slice[2..3];

try expect (ptr2.len == 1);

try expect (ptr2[0] == 3);

try expect (@TypeOf (ptr2) == *[1]u8);
}

test_slices.zig

$ zig test test slices.zig

1/2 test.using slices for strings... OK
2/2 test.slice pointer... OK

All 2 tests passed.

Shell
See also:

e Pointers
o for
e Arrays

Sentinel-Terminated Slices §

The syntax [:x]T is a slice which has a runtime-known length and also guarantees a
sentinel value at the element indexed by the length. The type does not guarantee that there
are no sentinel elements before that. Sentinel-terminated slices allow element access to the
len index.

const std = @import ("std");
const expect = std.testing.expect;

test "null terminated slice" {
const slice: [:0]const u8 = "hello";

try expect (slice.len == 5);
try expect(slice[5] == 0);
}

test_null terminated_slice.zig

S zig test test null terminated slice.zig
1/1 test.null terminated slice... OK
All 1 tests passed.

Shell

Sentinel-terminated slices can also be created using a variation of the slice syntax
data[start..end :x], where data is a many-item pointer, array or slice and x is the
sentinel value.

const std = @import ("std");
const expect = std.testing.expect;

test "null terminated slicing" {
var array = [_Ju8{ 3, 2, 1, 0, 3, 2, 1, 0 };
var runtime length: usize = 3;
const slice = arrayl[0..runtime length :0];

try expect (@TypeOf (slice) == [:0]u8);
try expect (slice.len == 3);

}
test_null terminated_slicing.zig

$ zig test test null terminated slicing.zig
1/1 test.null terminated slicing... OK
All 1 tests passed.

Shell

Sentinel-terminated slicing asserts that the element in the sentinel position of the backing
data is actually the sentinel value. If this is not the case, safety-protected Undefined
Behavior results.

const std = @import ("std");
const expect = std.testing.expect;

test "sentinel mismatch" {
var array = [_Ju8{ 3, 2, 1, 0 };

// Creating a sentinel-terminated slice from the array
with a length of 2

// will result in the value '1° occupying the sentinel
element position.

// This does not match the indicated sentinel value of '0°
and will lead

// to a runtime panic.

var runtime length: usize = 2;

const slice = arrayl[0..runtime length :0];

_ = slice;

}

test_sentinel mismatch.zig

$ zig test test sentinel mismatch.zig
1/1 test.sentinel mismatch... thread 2451922 panic: sentinel
mismatch: expected 0, found 1
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test sentinel mismatch.zig:12:24:
0x224246 in test.sentinel mismatch (test)
const slice = arrayl[0..runtime length :0];

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x22da49 in
mainTerminal (test)

} else test fn.func();
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:36:28: 0x225a0a in
main (test)

return mainTerminal () ;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x224842 in
posixCallMainAndExit (test)

root.main () ;
/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x224391 in
_start (test)
asm volatile (switch (native_arch) ({

?2?2:2:2: 0x0 in 22?2 (2?227?)

error: the following test command crashed:
/home/ci/actions-runner/_ work/zig-bootstrap/out/zig-local-
cache/0/3510ea03a08182d3c72b6b3a42d629a3/test

Shell
See also:

o Sentinel-Terminated Pointers
o Sentinel-Terminated Arrays

struct §

// Declare a struct.
// Zig gives no guarantees about the order of fields and the
size of
// the struct but the fields are guaranteed to be ABI-aligned.
const Point = struct {

x: £32,

y: £32,
}i

// Maybe we want to pass it to OpenGL so we want to be
particular about
// how the bytes are arranged.
const Point2 = packed struct {
R8BSy
y: £32,
}i

// Declare an instance of a struct.
const p = Point {

.x = 0.12,

.y = 0.34,

// Maybe we're not ready to fill out some of the fields.
var p2 = Point {

.x = 0.12,

.y = undefined,

// Structs can have methods
// Struct methods are not special, they are only namespaced
// functions that you can call with dot syntax.

const Vec3 = struct {
e £20

A ooy
y: £32,
29 B8S2p

pub fn init(x: £32, y: £32, z: £32) Vec3 {
return Vec3 {

X = %,
Y = Yy
.z =z,

}i

pub fn dot(self: Vec3, other: Vec3) £32 {

return self.x * other.x + self.y * other.y + self.z *

other.z;
}
}i

const expect = @import ("std").testing.expect;
test "dot product" {

const vl = Vec3.init (1.0, 0.0, 0.0);
const v2 = Vec3.init (0.0, 1.0, 0.0);
try expect(vl.dot (v2) == 0.0);

// Other than being available to call with dot syntax,
struct methods are

// not special. You can reference them as any other
declaration inside

// the struct:

try expect (Vec3.dot(vl, v2) == 0.0);
}

// Structs can have declarations.

// Structs can have 0 fields.

const Empty = struct {
pub const PI = 3.14;

}i

test "struct namespaced variable" {
try expect (Empty.PI == 3.14);
try expect (@sizeOf (Empty) == 0);

// you can still instantiate an empty struct
const does nothing = Empty {};

= does_nothing;

}

// struct field order is determined by the compiler for
optimal performance.
// however, you can still calculate a struct base pointer
given a field pointer:
fn setYBasedOnX(x: *£32, y: £32) void {
const point = @fieldParentPtr (Point, "x", x);
point.y = y;
}
test "field parent pointer" ({
var point = Point {
.x = 0.1234,
.y = 0.5678,
}i
setYBasedOnX (&point.x, 0.9);
try expect (point.y == 0.9);
}

// You can return a struct from a function. This is how we
generics
// in Zig:
fn LinkedList (comptime T: type) type {
return struct {
pub const Node = struct ({
prev: ?*Node,
next: ?*Node,
data: T,
}i

first: ?*Node,
last: ?*Node,
len: usize,

do

test "linked list" {

// Functions called at compile-time are memoized. This
means you can

// do this:

try expect (LinkedList (i32) == LinkedList (i32));

var list = LinkedList (i32) {
.first = null,
.last = null,
.len = 0,

}i

try expect(list.len == 0);

// Since types are first class values you can instantiate
the type

// by assigning it to a variable:

const ListOfInts = LinkedList (i32);

try expect (ListOfInts == LinkedList (i32));

var node = ListOfInts.Node {
.prev = null,
.next = null,
.data = 1234,

i

var list2 = LinkedList (i32) {

.first = &node,
.last = &node,
.len = 1,

}i

// When using a pointer to a struct, fields can be
accessed directly,

// without explicitly dereferencing the pointer.

// So you can do

try expect (list2.first.?.data == 1234);

// instead of try expect(list2.first.?.*.data == 1234);
}

test_structs.zig

$ zig test test structs.zig

1/4 test.dot product... OK

2/4 test.struct namespaced variable... OK
3/4 test.field parent pointer... OK

4/4 test.linked list... OK

All 4 tests passed.

Shell

Default Field Values §

Each struct field may have an expression indicating the default field value. Such
expressions are executed at comptime, and allow the field to be omitted in a struct literal
expression:

const Foo = struct {
a: i32 = 1234,
b: 132,

}i

test "default struct initialization fields" {
const x = Foo{
b =5,
}i
if (x.a + x.b != 1239) {
@compileError ("it's even comptime-known!");

}

test_struct_default field values.zig

$ zig test test_struct_default_ field values.zig
1/1 test.default struct initialization fields... OK

All 1 tests passed.

Shell

extern struct §
An extern struct has in-memory layout guaranteed to match the C ABI for the target.

This kind of struct should only be used for compatibility with the C ABI. Every other use
case should be solved with packed struct or normal struct.

See also:

e extern union
e extern enum

packed struct §
Unlike normal structs, packed structs have guaranteed in-memory layout:

e Fields remain in the order declared, least to most significant.
There is no padding between fields.
Zig supports arbitrary width Integers and although normally, integers with fewer than 8
bits will still use 1 byte of memory, in packed structs, they use exactly their bit width.
bool fields use exactly 1 bit.
An enum field uses exactly the bit width of its integer tag type.

e A packed union field uses exactly the bit width of the union field with the largest bit
width.

e Non-ABI-aligned fields are packed into the smallest possible ABI-aligned integers in
accordance with the target endianness.

This means that a packed struct can participate in a @bitCast or a @ptrCast to
reinterpret memory. This even works at comptime:

const std = Qimport ("std");

const native endian =

@import ("builtin") .target.cpu.arch.endian();
const expect = std.testing.expect;

const Full = packed struct {
number: ul6,

}i

const Divided = packed struct {
halfl: u8,
quarter3: u4,
quarterd: u4,

}i

test "@bitCast between packed structs" {
try doTheTest () ;
try comptime doTheTest();

}

fn doTheTest () !void {
try expect (@sizeOf (Full) == 2);
try expect (@sizeOf (Divided) == 2);
var full = Full{ .number = 0x1234 };
var divided: Divided = @bitCast (full);

try expect (divided.halfl == 0x34);
try expect (divided.quarter3 == 0x2);
try expect (divided.quarter4 == 0x1);

var ordered: [2]u8 = @bitCast(full);
switch (native endian) {

.Big => {
try expect (ordered[0] == 0x12);
try expect (ordered[1l] == 0x34);

by
.Little => {
try expect (ordered[0] == 0x34);
try expect (ordered[1l] == 0x12);
I

}

test_packed_structs.zig

$ zig test test packed structs.zig
1/1 test.@bitCast between packed structs... OK
All 1 tests passed.

Shell

Zig allows the address to be taken of a non-byte-aligned field:

const std = @import ("std");
const expect = std.testing.expect;

const BitField = packed struct {

a: u3,
198 B3
@8 T2

}i

var foo = BitField{

.a=1,
b =2,
@ = 3,

i
test "pointer to non-byte-aligned field" ({
const ptr = &foo.b;
try expect (ptr.* == 2);
}
test_pointer to_non-byte aligned field.zig
S zig test test pointer to non-byte aligned field.zig
1/1 test.pointer to non-byte-aligned field... OK
All 1 tests passed.

Shell

However, the pointer to a non-byte-aligned field has special properties and cannot be
passed when a normal pointer is expected:

const std = @import ("std");
const expect = std.testing.expect;

const BitField = packed struct ({

a: u3,
b: u3,
@8 g

}i

var bit field = BitField{
.a=1,
o =2,
.c =3,
}i

test "pointer to non-bit-aligned field" {
try expect (bar(&bit field.b) == 2);
}

fn bar (x: *const u3) u3 {
return x.*;

}
test_misaligned_pointer.zig

S zig test test misaligned pointer.zig
docgen_tmp/test_misaligned pointer.zig:17:20: error: expected
type '*const u3', found '*align(l:3:1) u3"'

try expect (bar (¢bit field.b) == 2);
docgen_tmp/test_misaligned pointer.zig:17:20: note: pointer
host size 'l' cannot cast into pointer host size '0'
docgen_tmp/test_misaligned pointer.zig:17:20: note: pointer
bit offset '3' cannot cast into pointer bit offset '0'
docgen_tmp/test_misaligned pointer.zig:20:11: note: parameter
type declared here
fn bar(x: *const u3) u3 {

Shell

In this case, the function bar cannot be called because the pointer to the non-ABI-aligned
field mentions the bit offset, but the function expects an ABI-aligned pointer.

Pointers to non-ABI-aligned fields share the same address as the other fields within their
host integer:

const std = @import ("std");
const expect = std.testing.expect;

const BitField = packed struct {

a: u3,
198 B3
@8 ©Zp

}i

var bit field = BitField{

.a=1,
b 2
.c =3

’

}i

test "pointers of sub-byte-aligned fields share addresses" ({
try expect (@intFromPtr (&bit field.a) ==
@intFromPtr (&bit field.b));
try expect (@intFromPtr (&bit field.a) ==
@intFromPtr (&bit field.c));
}

test_packed_struct field address.zig

$ zig test test packed struct field address.zig
1/1 test.pointers of sub-byte-aligned fields share
addresses... OK

All 1 tests passed.

Shell

This can be observed with @bitOffsetOf and offsetOf:

const std = Q@import ("std");
const expect = std.testing.expect;

const BitField = packed struct {

a: u3,
198 B3,
@3 W2

}i

test "pointer to non-bit-aligned field" {
comptime {

try expect (@bitOffsetOf (BitField, "a") == 0);
try expect (@bitOffsetOf (BitField, "b") == 3);
try expect (@bitOffsetOf (BitField, "c") == 6);
try expect (QoffsetOf (BitField, "a") == 0);
try expect (QoffsetOf (BitField, "b") == 0);
try expect (QoffsetOf (BitField, "c") == 0);

}

test_bitOffsetOf offsetOf.zig

S zig test test bitOffsetOf offsetOf.zig

1/1 test.pointer to non-bit-aligned field... OK

All 1 tests passed.

Shell

Packed structs have the same alignment as their backing integer, however, overaligned
pointers to packed structs can override this:

const std = @import ("std");
const expect = std.testing.expect;

const S = packed struct {
a: u32,
b: u32,

}i

test "overaligned pointer to packed struct" {
var foo: S align(4) = .{ .a =1, .b =2 };
const ptr: *align(4) S = &foo;
const ptr to b: *u32 = &ptr.b;
try expect (ptr_to b.* == 2);

}
test_overaligned packed struct.zig

$ zig test test overaligned packed struct.zig
1/1 test.overaligned pointer to packed struct... OK
All 1 tests passed.

Shell

It's also possible to set alignment of struct fields:

const std = @import ("std");
const expectEqual = std.testing.expectEqual;

test "aligned struct fields" {
const S = struct {
a: u32 align(2),
b: u32 align(64),
bi
var foo = S{ .a =1, .b =2 };

try expectEqual (64, @alignOf(S));

try expectEqual (*align(2) u32, QTypeOf (&foo.a));

try expectEqual (*align(64) u32, Q@TypeOf (&foo.b));
}

test_aligned struct fields.zig

$ zig test test aligned struct fields.zig
1/1 test.aligned struct fields... OK
All 1 tests passed.

Shell

Using packed structs with volatile is problematic, and may be a compile error in the future.
For details on this subscribe to this issue. TODO update these docs with a
recommendation on how to use packed structs with MMIO (the use case for volatile
packed structs) once this issue is resolved. Don't worry, there will be a good solution for
this use case in zig.

Struct Naming §
Since all structs are anonymous, Zig infers the type name based on a few rules.

e [f the struct is in the initialization expression of a variable, it gets named after that
variable.

e If the struct is in the return expression, it gets named after the function it is returning
from, with the parameter values serialized.
Otherwise, the struct gets a name such as (filename.funcname. _struct_ID).
If the struct is declared inside another struct, it gets named after both the parent struct
and the name inferred by the previous rules, separated by a dot.

https://github.com/ziglang/zig/issues/1761

const std = @import ("std");

pub fn main() void {
const Foo = struct {};
std.debug.print ("variable: {s}\n", .{@typeName (Foo)});
std.debug.print ("anonymous: {s}\n", .{@typeName (struct
b
std.debug.print ("function: {s}\n",
{@typeName (List (i32))});
}

fn List (comptime T: type) type {
return struct {
x: T,
}i
}

struct_name.zig

S zig build-exe struct name.zig

$./struct_name

variable: struct name.main.Foo
anonymous: struct name.main__struct 3509
function: struct name.List (132)

Shell

Anonymous Struct Literals §

Zig allows omitting the struct type of a literal. When the result is coerced, the struct literal
will directly instantiate the result location, with no copy:

const std = @import ("std");
const expect = std.testing.expect;
const Point = struct {x: i32, y: i32};

test "anonymous struct literal" {

var pt: Point = .{
.x = 13,
.y = 67,
}i
try expect (pt.x == 13);

try expect (pt.y == 67);
}

test_struct_result.zig

$ zig test test struct result.zig
1/1 test.anonymous struct literal... OK
All 1 tests passed.

Shell

The struct type can be inferred. Here the result location does not include a type, and so Zig
infers the type:

const std = @import ("std");
const expect = std.testing.expect;

test "fully anonymous struct" ({
try dump (. {
.int = Qas(u32, 1234),
.float = Qas(fe64, 12.34),
.b = true,
.s = "hi",
1)
}

fn dump (args: anytype) !void {

try expect(args.int == 1234);
try expect(args.float == 12.34);
try expect(args.b);
try expect(args.s[0] == 'h');

(

try expect(args.s[l] == 'i');

test_anonymous_struct.zig

S zig test test anonymous_struct.zig
1/1 test.fully anonymous struct... OK
All 1 tests passed.

Shell

Tuples §

Anonymous structs can be created without specifying field names, and are referred to as
"tuples".

The fields are implicitly named using numbers starting from 0. Because their names are
integers, they cannot be accessed with . syntax without also wrapping them in @"".
Names inside e"" are always recognised as identifiers.

Like arrays, tuples have a .len field, can be indexed (provided the index is comptime-
known) and work with the ++ and ** operators. They can also be iterated over with inline
for.

const std = @import ("std");
const expect = std.testing.expect;

test "tuple" {
const values = .{
Qas (u32, 1234),
Qas (fe4, 12.34),

true,
"hi,
} ++ .{false} ** 2;
try expect(values[0] == 1234);
try expect(values[4] == false);
inline for (values, 0..) |v, i| {
if (i != 2) continue;

try expect(v);
}
try expect(values.len == 6);
try expect (values.@"3"[0] == 'h');
}

test_tuples.zig

$ zig test test tuples.zig
1/1 test.tuple... OK
All 1 tests passed.

Shell

See also:

e comptime
o (@fieldParentPtr

enum §

const expect = @import ("std").testing.expect;
const mem = @import ("std") .mem;

// Declare an enum.
const Type = enum ({
ok,
not_ok,
}i

// Declare a specific enum field.
const c = Type.ok;

// 1f you want access to the ordinal value of an enum, you
// can specify the tag type.
const Value = enum(u2) {

zero,

one,

TwWO,
}i
// Now you can cast between u2 and Value.
// The ordinal value starts from 0, counting up by 1 from the
previous member.
test "enum ordinal value" {

try expect (@intFromEnum (Value.zero) == 0);
try expect (@intFromEnum(Value.one) == 1);
try expect (@intFromEnum (Value.two) == 2);

}

// You can override the ordinal value for an enum.
const Value2 = enum(u32) {

hundred = 100,

thousand = 1000,

million = 1000000,
}i

test "set enum ordinal value" {

try expect (@intFromEnum (Value2.hundred) == 100);
try expect (@intFromEnum(Value2.thousand) == 1000);
try expect (@intFromEnum (Value2.million) == 1000000) ;

}

// You can also override only some values.

const Value3 = enum(ud) {
ay
b =8,
Cy
d = 4,
ey

}i
test "enum implicit ordinal values and overridden values" {
try expect (@intFromEnum(Value3.a) == 0);

(
try expect (@intFromEnum(Value3.b) == 8);
try expect (@intFromEnum(Value3.c) == 9);
try expect (@intFromEnum(Value3.d) == 4);
try expect (@intFromEnum(Value3.e) == 5);

}

// Enums can have methods, the same as structs and unions.
// Enum methods are not special, they are only namespaced
// functions that you can call with dot syntax.
const Suit = enum {

clubs,

spades,

diamonds,

hearts,

pub fn isClubs(self: Suit) bool ({
return self == Suit.clubs;
}
}i
test "enum method" ({
const p = Suit.spades;
try expect (!p.isClubs());
}

// An enum can be switched upon.
const Foo = enum {
string,
number,
none,
}i
test "enum switch" {
const p = Foo.number;
const what is it = switch (p) {
Foo.string => "this is a string",
Foo.number => "this is a number",
Foo.none => "this is a none",
}i
try expect (mem.eql (u8, what is_it, "this is a number"));

}

// @typeInfo can be used to access the integer tag type of an
enum.
const Small = enum {

one,

two,

three,

fonr.

ey

}i
test "std.meta.Tag" {

try expect (@typeInfo(Small) .Enum.tag type == u2);
}

// QtypelInfo tells us the field count and the fields names:
test "@typeInfo" {
try expect (@typeInfo(Small) .Enum.fields.len == 4);
try expect (mem.eql (u8,
@typeInfo(Small) .Enum.fields[1].name, "two"));
}

// @tagName gives a [:0]const u8 representation of an enum
value:
test "@tagName" {

try expect (mem.eql (u8, @tagName (Small.three), "three"));
}

test_enums.zig

$ zig test test enums.zig

1/8 test.enum ordinal value... OK

2/8 test.set enum ordinal value... OK

3/8 test.enum implicit ordinal values and overridden values...
OK

4/8 test.enum method... OK

5/8 test.enum switch... OK

6/8 test.std.meta.Tag... OK

7/8 test.@typelInfo... OK

8/8 test.@tagName... OK

All 8 tests passed.

Shell

See also:

e (@typelnfo
e (@tagName
o (@sizeOf

extern enum §

By default, enums are not guaranteed to be compatible with the C ABI:

const Foo = enum { a, b, c };
export fn entry(foo: Foo) void { _ = foo; }

enum_export_error.zig

$ zig build-obj enum export error.zig

docgen tmp/enum export error.zig:2:17: error: parameter of
type 'enum export error.Foo' not allowed in function with
calling convention 'C'

export fn entry(foo: Foo) void { _ = foo; }
docgen_tmp/enum_export_error.zig:2:17: note: enum tag type
'u2' is not extern compatible
docgen_tmp/enum_export_error.zig:2:17: note: only integers
with 0, 8, 16, 32, 64 and 128 bits are extern compatible
docgen_tmp/enum_export_error.zig:1:13: note: enum declared
here

const Foo = enum { a, b, c };

Shell

For a C-ABI-compatible enum, provide an explicit tag type to the enum:

const Foo = enum(c_int) { a, b, c };
export fn entry(foo: Foo) void { _ = foo; }

enum_export.zig
$ zig build-obj enum export.zig

Shell

Enum Literals §

Enum literals allow specifying the name of an enum field without specifying the enum type:

const std = Qimport ("std");
const expect = std.testing.expect;

const Color = enum {
auto,
off,
on,

}i

test "enum literals" {

const colorl: Color = .auto;
const color2 = Color.auto;
try expect(colorl == color2);

}

test "switch using enum literals" {
const color = Color.on;
const result = switch (color) {
.auto => false,
.on => true,
.0off => false,
i
try expect (result);
}

test_enum_literals.zig

$ zig test test enum literals.zig

1/2 test.enum literals... OK

2/2 test.switch using enum literals... OK
All 2 tests passed.

Shell

Non-exhaustive enum §

A Non-exhaustive enum can be created by adding a trailing ' ' field. It must specify a tag
type and cannot consume every enumeration value.

(@enumFromInt on a non-exhaustive enum involves the safety semantics of @intCast to
the integer tag type, but beyond that always results in a well-defined enum value.

Aswitch on a non-exhaustive enum can include a' ' prong as an alternative to an else
prong with the difference being that it makes it a compile error if all the known tag names
are not handled by the switch.

const std = @import ("std");
const expect = std.testing.expect;

const Number = enum(u8) {
one,
two,
three,

’

}i

test "switch on non-exhaustive enum" {
const number = Number.one;
const result = switch (number) ({
.one => true,

.two,
.three => false,
_ => false,

}i

try expect (result);

const is_one = switch (number) {
.one => true,
else => false,

bi

try expect(is_one);

test_switch_non-exhaustive.zig

$ zig test test_switch_non-exhaustive.zig
1/1 test.switch on non-exhaustive enum... OK
All 1 tests passed.

Shell

union §

Abare union defines a set of possible types that a value can be as a list of fields. Only one
field can be active at a time. The in-memory representation of bare unions is not
guaranteed. Bare unions cannot be used to reinterpret memory. For that, use @ptrCast, or
use an extern union or a packed union which have guaranteed in-memory layout.
Accessing the non-active field is safety-checked Undefined Behavior:

const Payload = union {
int: 164,
float: fe4,
boolean: bool,
}i
test "simple union" {
var payload = Payload{ .int = 1234 };
payload.float = 12.34;
}

test wrong_union_access.zig

S zig test test wrong union_ access.zig
1/1 test.simple union... thread 2452406 panic: access of union
field 'float' while field 'int' is active
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test wrong union_access.zig:8:12:
0x224257 in test.simple union (test)

payload.float = 12.34;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/test_runner.zig:176:28: 0x22d429 in
mainTerminal (test)

} else test_ fn.func();
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/test runner.zig:36:28: 0x22547a in
main (test)

return mainTerminal () ;
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x224812 in
posixCallMainAndExit (test)

root.main() ;
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:243:5: 0x224361 in
_start (test)
asm volatile (switch (native arch) {

?2?2?2:2:?2: 0x0 in ?2?27? (2?27?)

error: the following test command crashed:
/home/ci/actions-runner/ work/zig-bootstrap/out/zig-local-
cache/0/4c8d493e90b10d80885d62728b7b9734/test

Shell

You can activate another field by assigning the entire union:

const std = @import ("std");
const expect = std.testing.expect;

const Payload = union ({
int: 164,
float: fé4,
boolean: bool,
}i
test "simple union" {
var payload = Payload{ .int = 1234 };

try expect (payload.int == 1234);
payload = Payload{ .float = 12.34 };
try expect (payload.float == 12.34);

}

test_simple_union.zig

$ zig test test_simple_union.zig
1/1 test.simple union... OK

All 1 tests passed.

Shell
In order to use switch with a union, it must be a Tagged union.

To initialize a union when the tag is a comptime-known name, see (@unionlnit.

Tagged union §

Unions can be declared with an enum tag type. This turns the union into a tagged union,
which makes it eligible to use with switch expressions. Tagged unions coerce to their tag
type: Type Coercion: Unions and Enums.

const std = Qimport ("std");
const expect = std.testing.expect;

const ComplexTypeTag = enum {
ok,
not_ok,
}i
const ComplexType = union (ComplexTypeTag) {
ok: u8,
not_ok: void,
}i

test "switch on tagged union" {
const c = ComplexType{ .ok = 42 };
try expect (@as (ComplexTypeTag, c) == ComplexTypeTag.ok);

switch (c) {
ComplexTypeTag.ok => |value| try expect (value == 42),
ComplexTypeTag.not_ ok => unreachable,

test "get tag type" {
try expect (std.meta.Tag (ComplexType) == ComplexTypeTag) ;
}

test_tagged union.zig

S zig test test tagged union.zig

1/2 test.switch on tagged union... OK
2/2 test.get tag type... OK

All 2 tests passed.

Shell

In order to modify the payload of a tagged union in a switch expression, place a * before
the variable name to make it a pointer:

const std = @import ("std");
const expect = std.testing.expect;

const ComplexTypeTag = enum {
ok,
not_ ok,
bi
const ComplexType = union (ComplexTypeTag) {
ok: u8,
not ok: void,

}i

test "modify tagged union in switch" {
var ¢ = ComplexType{ .ok = 42 };

switch (c) {
ComplexTypeTag.ok => |*value| value.* += 1,
ComplexTypeTag.not_ok => unreachable,

try expect(c.ok == 43);
}

test_switch_modify_tagged union.zig

S zig test test switch modify tagged union.zig
1/1 test.modify tagged union in switch... OK
All 1 tests passed.

Shell

Unions can be made to infer the enum tag type. Further, unions can have methods just like
structs and enums.

const std = @import ("std");
const expect = std.testing.expect;

const Variant = union (enum) {
int: 132,
boolean: bool,

// void can be omitted when inferring enum tag type.
none,

fn truthy(self: Variant) bool ({
return switch (self) {
Variant.int => |x_int| x_int != 0,
Variant.boolean => |x_bool| x_bool,
Variant.none => false,
}i

}i
test "union method" {
var vl = Variant{ .int =1 };

var v2 = Variant{ .boolean = false };

try expect (vl.truthy());
try expect (!v2.truthy());
}

test_union_method.zig
$ zig test test union method.zig
1/1 test.union method... OK

All 1 tests passed.

Shell

(@tagName can be used to return a comptime [:0]const u8 value representing the field
name:

const std = @import ("std");
const expect = std.testing.expect;

const Small2 = union (enum) {

a: 132,
b: bool,
c: u8,

}i
test "Q@tagName" {
try expect (std.mem.eql (u8, QtagName(Small2.a), "a"));
}
test_tagName.zig
$ zig test test tagName.zig
1/1 test.@tagName... OK
All 1 tests passed.

Shell

extern union §
An extern union has memory layout guaranteed to be compatible with the target C ABI.
See also:

e extern struct

packed union §

A packed union has well-defined in-memory layout and is eligible to be in a packed struct.

Anonymous Union Literals §

Anonymous Struct Literals syntax can be used to initialize unions without specifying the
type:

const std = @import ("std");
const expect = std.testing.expect;

const Number = union {
int: 132,
float: f64,

}i

test "anonymous union literal syntax" {

var i: Number = .{.int = 42};
var f = makeNumber () ;

try expect(i.int == 42);

try expect (f.float == 12.34);

}
fn makeNumber () Number {
return .{.float = 12.34};
}
test_anonymous_union.zig
S zig test test_anonymous_union.zig
1/1 test.anonymous union literal syntax... OK

All 1 tests passed.

Shell

opaque §

opaque {} declares a new type with an unknown (but non-zero) size and alignment. It can
contain declarations the same as structs, unions, and enums.

This is typically used for type safety when interacting with C code that does not expose
struct details. Example:

const Derp = opaque {};
const Wat = opaque {};

extern fn bar(d: *Derp) void;
fn foo(w: *Wat) callconv(.C) void ({
bar (w) ;

test "call foo" {
foo (undefined) ;

}
test_opaque.zig

$ zig test test opaque.zig
docgen tmp/test opaque.zig:6:9: error: expected type
'*test_opaque.Derp', found '*test_ opaque.Wat'

bar (w) ;
docgen_tmp/test_opaque.zig:6:9: note: pointer type child
'test_opaque.Wat' cannot cast into pointer type child
'test_opaque.Derp'
docgen_tmp/test_opaque.zig:2:13: note: opaque declared here

docgen_tmp/test_opaque.zig:1:14: note: opaque declared here
const Derp = opaque {};

docgen_tmp/test_opaque.zig:4:18: note: parameter type declared
here

extern fn bar(d: *Derp) void;

~

referenced by:

test.call foo: docgen_tmp/test_opaque.zig:10:5

remaining reference traces hidden; use '-freference-trace'
to see all reference traces

Shell

Blocks §

Blocks are used to limit the scope of variable declarations:

test "access variable after block scope" {
{
var x: 132 = 1;
= x;

}
X += 1;

}
test_blocks.zig

$ zig test test blocks.zig
docgen_tmp/test_blocks.zig:6:5: error: use of undeclared
identifier 'x'

X += 1;

A

Shell

Blocks are expressions. When labeled, break can be used to return a value from the block:

const std = @import ("std");
const expect = std.testing.expect;

test "labeled break from labeled block expression" ({
var y: 132 = 123;

const x = blk: {
y += 1;
break :blk y;
}i
try expect(x == 124);
try expect(y == 124);

test_labeled break.zig

$ zig test test_labeled break.zig
1/1 test.labeled break from labeled block expression... OK
All 1 tests passed.

Shell
Here, b1k can be any name.
See also:

o Labeled while
e Labeled for

Shadowing §

Identifiers are never allowed to "hide" other identifiers by using the same name:
const pi = 3.14;

test "inside test block" {
// Let's even go inside another block
{
var pi: i32 = 1234;
}
}

test_shadowing.zig

$ zig test test shadowing.zig
docgen tmp/test shadowing.zig:6:13: error: local variable
shadows declaration of 'pi'

var pi: i32 = 1234;

A

docgen tmp/test shadowing.zig:1:1: note: declared here
const pi = 3.14;

Shell

Because of this, when you read Zig code you can always rely on an identifier to
consistently mean the same thing within the scope it is defined. Note that you can,
however, use the same name if the scopes are separate:
test "separate scopes" {
{
const pi = 3.14;
_ = pi;

var pi: bool = true;
_ = pi;
}
test_scopes.zig
S zig test test scopes.zig
1/1 test.separate scopes... OK

All 1 tests passed.

Shell

Empty Blocks §

An empty block is equivalent to void{}:

const std = @import ("std");
const expect = std.testing.expect;

test {
const a = {};
const b = void{};
try expect (QTypeOf (a) == void);
try expect (QTypeOf (b) == void);
try expect(a == b);

}

test_empty_block.zig

$ zig test test empty block.zig
1/1 test 0... OK

All 1 tests passed.

Shell

switch §

const std = @import ("std");
const builtin = @import ("builtin");
const expect = std.testing.expect;

test "switch simple" {
const a: u64 = 10;
const zz: u64 = 103;

// All branches of a switch expression must be able to be
coerced to a
// common type.
//
// Branches cannot fallthrough. If fallthrough behavior is
desired, combine
// the cases and use an if.
const b = switch (a) {
// Multiple cases can be combined via a ',
1, 2, 3=>0,

// Ranges can be specified using the ... syntax. These
are inclusive

// of both ends.

5...100 => 1,

// Branches can be arbitrarily complex.
101 => blk: {
const c: u64

= 5;
break :blk c * 2

= dhg
b

// Switching on arbitrary expressions is allowed as
long as the
// expression is known at compile-time.
zz => 2z,
blk: {
const d: u32 58
const e: u32 = 100;
break :blk d + e;
} => 107,

// The else branch catches everything not already
captured.
// Else branches are mandatory unless the entire range
of values
// is handled.
else => 9,
bi

try expect(b == 1);
}

// Switch expressions can be used outside a function:
const os_msg = switch (builtin.target.os.tag) {
.linux => "we found a linux user",
else => "not a linux user",

}i

// Inside a function, switch statements implicitly are
compile-time
// evaluated if the target expression is compile-time known.
test "switch inside function" {
switch (builtin.target.os.tag) {
.fuchsia => {
// On an OS other than fuchsia, block is not even
analyzed,
// so this compile error is not triggered.
// On fuchsia this compile error would be
triggered.
QcompileError ("fuchsia not supported");
by

else => {},

}

test_switch.zig

$ zig test test switch.zig

1/2 test.switch simple... OK

2/2 test.switch inside function... OK
All 2 tests passed.

Shell

switch can be used to capture the field values of a Tagged union. Modifications to the field
values can be done by placing a * before the capture variable name, turning it into a pointer.

const expect = @import ("std").testing.expect;

test "switch on tagged union™ {
const Point = struct {
x: u8,
y: u8,
}i

const Item = union (enum) {

a: u32,
c: Point,
d,
e: u32,
}i
var a = Item{ .c = Point{ .x =1, .y =21} };

// Switching on more complex enums is allowed.
const b = switch (a) {
// A capture group is allowed on a match, and will
return the enum
// value matched. If the payload types of both cases
are the same
// they can be put into the same switch prong.
Item.a, Item.e => |item| item,

// A reference to the matched value can be obtained
using “*° syntax.
Item.c => |*item| blk: {
item.*.x += 1;
break :blk 6;
by

// No else is required if the types cases was
exhaustively handled
Item.d => 8,
bi

try expect(b == 6);

try expect(a.c.x == 2);
}
test_switch_tagged union.zig
S zig test test switch tagged union.zig
1/1 test.switch on tagged union... OK
All 1 tests passed.

Shell

See also:

comptime
enum

(@compileError
Compile Variables

Exhaustive Switching §

When a switch expression does not have an else clause, it must exhaustively list all the
possible values. Failure to do so is a compile error:

const Color = enum {
auto,
off,
on,

}i

test "exhaustive switching" {
const color = Color.off;
switch (color) ({
Color.auto => {},
Color.on => {},

}
test_unhandled_enumeration_value.zig

$ zig test test_unhandled_ enumeration_value.zig
docgen_tmp/test_unhandled enumeration_value.zig:9:5: error:
switch must handle all possibilities

switch (color) {
docgen_tmp/test_unhandled enumeration_value.zig:3:5: note:
unhandled enumeration value: 'off'

off,
docgen_tmp/test_unhandled enumeration_ value.zig:1:15: note:
enum 'test unhandled enumeration_ value.Color' declared here
const Color = enum {

~

Shell

Switching with Enum Literals §

Enum Literals can be useful to use with switch to avoid repetitively specifying enum or
union types:

const std = @import ("std");
const expect = std.testing.expect;

const Color = enum {
auto,
off,
on,

}i

test "enum literals with switch" {
const color = Color.off;
const result = switch (color) {
.auto => false,
.on => false,
.0off => true,
}i
try expect (result);
}

test_exhaustive switch.zig
S zig test test_exhaustive switch.zig
1/1 test.enum literals with switch... OK

All 1 tests passed.

Shell

Inline switch §

Switch prongs can be marked as inline to generate the prong's body for each possible
value it could have:

const std = @import ("std");
const expect = std.testing.expect;
const expectError = std.testing.expectError;

fn isFieldOptional (comptime T: type, field index: usize) !bool
{
const fields = @typeInfo(T).Struct.fields;
return switch (field index) {
// This prong is analyzed "fields.len - 1° times with
“idx" being a
// unique comptime-known value each time.
inline 0...fields.len - 1 => |idx]|
QtypeInfo(fields[idx].type) == .Optional,
else => return error.IndexOutOfBounds,
}i

const Structl = struct { a: u32, b: ?2u32 };

test "using @typeInfo with runtime values" {
var index: usize = 0;
try expect(!try isFieldOptional (Structl, index));
index += 1;
try expect (try isFieldOptional (Structl, index));
index += 1;
try expectError (error.IndexOutOfBounds,
isFieldOptional (Structl, index));
}

// Calls to ‘isFieldOptional’ on ‘Structl’' get unrolled to an
equivalent
// of this function:
fn isFieldOptionalUnrolled(field index: usize) !bool {
return switch (field index) {
0 => false,
1 => true,
else => return error.IndexOutOfBounds,
bi
}

test_inline switch.zig
$ zig test test_inline switch.zig
1/1 test.using @typeInfo with runtime values... OK

All 1 tests passed.

Shell

inline else prongs can be used as a type safe alternative to inline for loops:

const std = @import ("std");
const expect = std.testing.expect;

const SliceTypeA = extern struct {
len: usize,
ptr: [*]u32,
bi
const SliceTypeB = extern struct {
ptr: [*]1SliceTypeA,
len: usize,
bi
const AnySlice = union(enum) {
a: SliceTypeA,
b: SliceTypeB,
c: [lconst u8,
d: []AnySlice,
bi

fn withFor (any: AnySlice) usize {
const Tag = @typeInfo(AnySlice).Union.tag type.?;
inline for (Q@typeInfo(Tag).Enum.fields) |field| {
// With “inline for" the function gets generated as
// a series of “if' statements relying on the

optimizer
// to convert it to a switch.
if (field.value == QintFromEnum(any)) {

return @field(any, field.name).len;
}

}

// When using ‘inline for' the compiler doesn't know that
every

// possible case has been handled requiring an explicit
‘unreachable .

unreachable;

fn withSwitch(any: AnySlice) usize {
return switch (any) {
// With ‘inline else’ the function is explicitly
generated
// as the desired switch and the compiler can check
that
// every possible case is handled.
inline else => |slice| slice.len,
bi

test "inline for and inline else similarity" {

var any = AnySlice{ .c = "hello" };
try expect (withFor (any) == 5);
try expect (withSwitch (any) == 5);

}

test_inline_else.zig

S zig test test inline else.zig

1/1 test.inline for and inline else similarity... OK

All 1 tests passed.

Shell

When using an inline prong switching on an union an additional capture can be used to
obtain the union's enum tag value.

const std = @import ("std");
const expect = std.testing.expect;

const U = union (enum) {
a: u32,
b: £32,

}i

fn getNum(u: U) u32 {
switch (u) {
// Here ‘num’ 1is a runtime-known value that is either
// ‘u.a’ or ‘u.b’ and ‘tag’ is ‘u’'s comptime-known
tag value.
inline else => |num, tag| ({
if (tag == .b) {
return @intFromFloat (num) ;
}

return num;

test "test" {
var u = U{ .b = 42 };
try expect (getNum(u) == 42);
}
test_inline_switch_union_tag.zig
$ zig test test_inline switch union_tag.zig
1/1 test.test... OK
All 1 tests passed.

Shell
See also:
e inline while

e inline for

while §

A while loop is used to repeatedly execute an expression until some condition is no longer
true.

const expect = @import("std").testing.expect;

test "while basic" {
var i: usize = 0;
while (i < 10) {
i+=1;
}
try expect (i == 10);

}

test_while.zig

S zig test test_while.zig
1/1 test.while basic... OK
All 1 tests passed.

Shell

Use break to exit a while loop early.

const expect = @import ("std").testing.expect;

test "while break" {
var i: usize = 0;
while (true) {
if (i == 10)
break;
i4+=1;
}
try expect (i == 10);
}

test_while break.zig

$ zig test test while break.zig
1/1 test.while break... OK
All 1 tests passed.

Shell

Use continue to jump back to the beginning of the loop.
const expect = @import ("std").testing.expect;

test "while continue" {
var i: usize = 0;
while (true) {
i+=1;
if (i < 10)
continue;
break;
}
try expect (i == 10);
}

test while continue.zig

$ zig test test while continue.zig
1/1 test.while continue... OK

All 1 tests passed.

Shell

While loops support a continue expression which is executed when the loop is continued.
The continue keyword respects this expression.

const expect = @import ("std").testing.expect;

test "while loop continue expression” {

var i: usize = 0;
while (i < 10) : (1 += 1) {}
try expect (i == 10);

test "while loop continue expression, more complicated" {

var i: usize = 1;

var j: usize = 1;

while (1 * j < 2000) : ({ i *=2; 3 *= 3; }) {
const my 1j =1 * J;

try expect(my ij < 2000);
}
test_ while continue_expression.zig

S zig test test_while continue expression.zig

1/2 test.while loop continue expression... OK
2/2 test.while loop continue expression, more complicated...
OK

All 2 tests passed.
Shell

While loops are expressions. The result of the expression is the result of the else clause of
a while loop, which is executed when the condition of the while loop is tested as false.

break, like return, accepts a value parameter. This is the result of the while expression.

When you break from a while loop, the else branch is not evaluated.
const expect = @import ("std").testing.expect;
test "while else" {
try expect (rangeHasNumber (0, 10, 5));
try expect (!rangeHasNumber (0, 10, 15));
}

fn rangeHasNumber (begin: usize, end: usize, number: usize)

bool {
var i = begin;
return while (i < end) : (i += 1) {

if (i == number) {
break true;

}

} else false;

}
test while else.zig

S zig test test while else.zig
1/1 test.while else... OK
All 1 tests passed.

Shell

Labeled while §

When a while loop is labeled, it can be referenced from a break or continue from within
a nested loop:

test "nested break" {
outer: while (true) {
while (true) {
break :outer;

}

test "nested continue" {
var i: usize = 0;
outer: while (i < 10) : (i += 1) {
while (true) {
continue :outer;

}

test while nested break.zig

S zig test test while nested break.zig
1/2 test.nested break... OK

2/2 test.nested continue... OK

All 2 tests passed.

Shell

while with Optionals §

Just like if expressions, while loops can take an optional as the condition and capture the
payload. When null is encountered the loop exits.

When the |x| syntax is present on a while expression, the while condition must have an
Optional Type.

The else branch is allowed on optional iteration. In this case, it will be executed on the
first null value encountered.

const expect = @import ("std").testing.expect;

test "while null capture" ({
var suml: u32 = 0;
numbers left = 3;
while (eventuallyNullSequence()) |valuel| {
suml += value;
}

try expect (suml == 3);

var sum2: u32 = 0;
numbers left = 3;

while (eventuallyNullSequence()) |valuel| {
sum2 += value;

} else {
try expect (sum2 == 3);

var numbers_left: u32 = undefined;
fn eventuallyNullSequence () ?u32 {
return if (numbers_left == 0) null else blk: {
numbers_left -= 1;
break :blk numbers left;
}i
}

test_while null capture.zig

S zig test test while null capture.zig
1/1 test.while null capture... OK
All 1 tests passed.

Shell

while with Error Unions §

Just like if expressions, while loops can take an error union as the condition and capture
the payload or the error code. When the condition results in an error code the else branch
is evaluated and the loop is finished.

When the else |x| syntax is present on a while expression, the while condition must
have an Error Union Type.

const expect = @import ("std").testing.expect;

test "while error union capture" {
var suml: u32 = 0;
numbers_left = 3;
while (eventuallyErrorSequence()) |value| {
suml += value;
} else |err| {
try expect (err == error.ReachedZero) ;

var numbers left: u32 = undefined;

fn eventuallyErrorSequence () anyerror!u32 ({
return if (numbers_ left == 0) error.ReachedZero else blk:
{
numbers left -= 1;
break :blk numbers left;
}i
}

test_while error_capture.zig
$ zig test test while error capture.zig
1/1 test.while error union capture... OK

All 1 tests passed.

Shell

inline while §

While loops can be inlined. This causes the loop to be unrolled, which allows the code to
do some things which only work at compile time, such as use types as first class values.

const expect = @import ("std").testing.expect;

test "inline while loop" {

comptime var i = 0;

var sum: usize 0;

inline while (i < 3) : (i += 1) {

const T = switch (i) {

0 => f32,
1 => 18,
2 => bool,
else => unreachable,

}i
sum += typeNameLength (T) ;
}

try expect(sum == 9);

fn typeNameLength (comptime T: type) usize {
return QtypeName (T).len;
}

test_inline_while.zig

S zig test test _inline while.zig
1/1 test.inline while loop... OK
All 1 tests passed.

Shell
It is recommended to use inline loops only for one of these reasons:

e You need the loop to execute at comptime for the semantics to work.
e You have a benchmark to prove that forcibly unrolling the loop in this way is
measurably faster.

See also:

o if
Optionals
Errors

comptime
unreachable

for §

const expect = @import ("std").testing.expect;

test "for basics" {
const items = [1i32 { 4, 5, 3, 4, 0 };
var sum: 132 = 0;

// For loops iterate over slices and arrays.
for (items) |value| {
// Break and continue are supported.
if (value == 0) {
continue;
}
sum += value;

}
try expect (sum == 16);

// To iterate over a portion of a slice, reslice.
for (items[0..1]) |value| {
sum += value;
}
try expect (sum == 20);

// To access the index of iteration, specify a second
condition as well

// as a second capture value.

var sum2: 132 = 0;

fAar (itame NV | i

S Y A T 2R
try expect (QTypeOf (i) == usize);
sum2 += Qas (132, @intCast(i));

}

try expect (sum2 == 10);

// To iterate over consecutive integers, use the range

syntax.
// Unbounded range is always a compile error.
var sum3 : usize = 0;

for (0..5) |i]| {
sum3 += 1i;
}
try expect (sum3 == 10);

test "multi object for" {
const items = [_Jusize{ 1, 2, 3 };
const items2 = [Jusize{ 4, 5, 6 };
var count: usize = 0;

// Iterate over multiple objects.
// All lengths must be equal at the start of the loop,
otherwise detectable
// illegal behavior occurs.
for (items, items2) [i, JI {
count += i + j;

try expect (count == 21);

test "for reference" {
var items = [_]1i32 { 3, 4, 2 };

// Iterate over the slice by reference by
// specifying that the capture value is a pointer.
for (&items) |*value| {

value.* += 1;

try expect (items[0] == 4);
try expect (items[1l] == 5);
try expect (items[2] == 3);

test "for else" {

// For allows an else attached to it, the same as a while
loop.

var items = [_]1?i32 { 3, 4, null, 5 };

// For loops can also be used as expressions.
// Similar to while loops, when you break from a for loop,
the else branch is not evaluated.

var sum: 132 = 0;
const result = for (items) |value| {
if (value != null) {

sum += value.?;
}
} else blk: {
try expect (sum == 12);
break :blk sum;
i
try expect (result == 12);
}

test_for.zig

$ zig test test for.zig

1/4 test.for basics... OK

2/4 test.multi object for... OK
3/4 test.for reference... OK
4/4 test.for else... OK

All 4 tests passed.

Shell

Labeled for §

When a for loop is labeled, it can be referenced from a break or continue from within a
nested loop:

const std = @import ("std");
const expect = std.testing.expect;

test "nested break" {

var count: usize = 0;
outer: for (1..6) | _ | {
for (1..6) |_I {

count += 1;
break :outer;
}
}
try expect(count == 1);

}

test "nested continue"” {

var count: usize = 0;
outer: for (1..9) [_| {
for (1..6) |_1| {

count += 1;
continue :outer;

}

try expect (count == 8);

}
test_for_nested_break.zig

S zig test test for nested break.zig
1/2 test.nested break... OK

2/2 test.nested continue... OK

All 2 tests passed.

Shell

inline for §

For loops can be inlined. This causes the loop to be unrolled, which allows the code to do
some things which only work at compile time, such as use types as first class values. The
capture value and iterator value of inlined for loops are compile-time known.

const expect = @import ("std").testing.expect;

test "inline for loop" {
const nums = [_]i32{2, 4, 6};
var sum: usize = 0;
inline for (nums) [i| {
const T = switch (i) {
2 => £32,
4 => 1i8,
6 => bool,
else => unreachable,
}i
sum += typeNameLength (T) ;
}
try expect(sum == 9);

}

fn typeNamelLength (comptime T: type) usize {
return Q@typeName (T).len;
}

test_inline for.zig

$ zig test test inline for.zig
1/1 test.inline for loop... OK
All 1 tests passed.

Shell

It is recommended to use inline loops only for one of these reasons:

e You need the loop to execute at comptime for the semantics to work.

e You have a benchmark to prove that forcibly unrolling the loop in this way is
measurably faster.

See also:

while
comptime

Arrays
Slices

ot o

if§

// I1f expressions have three uses, corresponding to the three
types:

// * bool

// * 2T

// * anyerror!T
const expect = @import ("std").testing.expect;

test "if expression" {

// 1f expressions are used instead of a ternary
expression.

const a: u32 = 5;

const b: u32 4;

const result = if (a != b) 47 else 3089;

try expect (result == 47);

test "if boolean" {
// 1f expressions test boolean conditions.
const a: u32 = 5;
const b: u32 = 4;
if (a !=b) {
try expect (true);
} else if (a == 9) {
unreachable;
} else {
unreachable;

test "if optional™ {
// 1f expressions test for null.

const a: ?u32 = 0;
if (a) |valuel| {

try expect (value == 0);
} else {

unreachable;

const b: ?u32 = null;

if (b) I_1I {
unreachable;
} else {

try expect (true);
}

// The else is not required.
if (a) |valuel| {
try expect(value == 0);

}

// To test against null only, use the binary equality
operator.
if (b == null) {
try expect (true);

}

// Access the value by reference using a pointer capture.
var c: ?u32 = 3;
if (c) |*valuel| {

value.* = 2;

if (c) |valuel| {

try expect(value == 2);
} else {

unreachable;

test "if error union" ({
// If expressions test for errors.
// Note the |err| capture on the else.

const a: anyerror!u32 = 0;
if (a) |valuel| {

try expect(value == 0);
} else |err| {

= err;

unreachable;

const b: anyerror!u32 = error.BadValue;
if (b) |value| {

_ = value;

unreachable;
} else |err| {

try expect (err == error.BadValue);

}

// The else and |err| capture is strictly required.
if (a) |value| {

try expect (value == 0);
} else | | {}

// To check only the error value, use an empty block
expression.
if (b) |_| {} else |err| {
try expect(err == error.BadValue);

}

// BAccess the value by reference using a pointer capture.
var c: anyerror!u32 = 3;
if (c) [|*valuel| {
value.* = 9;
} else |_| {
unreachable;

if (c) |value| {

try expect (value == 9);
} else |_| {

unreachable;

test "if error union with optional" ({

// 1f expressions test for errors before unwrapping
optionals.

// The |optional value| capture's type is ?u32.

const a: anyerror!?u32 = 0;
if (a) loptional valuel| {

try expect (optional value.? == 0);
} else Jerr| {

_ = err;

unreachable;

const b: anyerror!?u32 = null;
if (b) loptional valuel| {

try expect (optional value == null);
}else |_| {

unreachable;

const c: anyerror!?u32 = error.BadValue;
if (c) loptional valuel| {

_ = optional value;

unreachable;
} else |err| {

try expect (err == error.BadValue);

}

// Access the value by reference by using a pointer
capture each time.
var d: anyerror!?u32 = 3;
if (d) [|*optional value| {
if (optional value.*) |*value| {

value.* = 9;
}
} else |_| {
unreachable;

}

if (d) |optional value| {
try expect (optional value.? == 9);
} else |_| {
unreachable;
}
}

test_if.zig

$ zig test test if.zig

1/5 test.if expression... OK

2/5 test.if boolean... OK

3/5 test.if optional... OK

4/5 test.if error union... OK

5/5 test.if error union with optional... OK
All 5 tests passed.

Shell
See also:

e Optionals
e FErrors

defer §

const std = @import ("std");
const expect = std.testing.expect;
const print = std.debug.print;

// defer will execute an expression at the end of the current
scope.
fn deferExample () !usize {

var a: usize = 1;

defer a = 2;
a=1;

}

try expect(a == 2);

a =>5;
return a;

test "defer basics" {
try expect ((try deferExample()) == 5);
}

// If multiple defer statements are specified, they will be
executed in
// the reverse order they were run.
fn deferUnwindExample () void {
print ("\n", .{});

defer {
print ("1 ", .{});
}
defer {
print ("2 ", .{});
}
if (false) {
// defers are not run if they are never executed.
defer {
print ("3 ", .{}):

test "defer unwinding" {
deferUnwindExample () ;

}
test_defer.zig

$ zig test test defer.zig
1/2 test.defer basics... OK
2/2 test.defer unwinding...
2 1 OK

All 2 tests passed.

Shell

// Inside a defer expression the return statement is not
allowed.
fn deferInvalidExample () !void {
defer {
return error.DeferError;

return error.DeferError;

}
test_invalid_defer.zig

$ zig test test invalid defer.zig
docgen tmp/test invalid defer.zig:4:9: error: cannot return
from defer expression
return error.DeferError;
docgen tmp/test invalid defer.zig:3:5: note: defer expression
here
defer {

Amnn

Shell

const std = Q@import ("std");
const print = std.debug.print;

// The errdefer keyword is similar to defer, but will only
execute if the
// scope returns with an error.
//
// This is especially useful in allowing a function to clean
up properly
// on error, and replaces goto error handling tactics as seen
in c.
fn deferErrorExample (is_error: bool) !void {

print ("\nstart of function\n", .{});

// This will always be executed on exit
defer {
print ("end of function\n", .{});

errdefer {
print ("encountered an error!\n", .{});

if (is_error) {
return error.DeferError;
}
}

// The errdefer keyword also supports an alternative syntax to
capture the
// generated error.
//
// This is useful for printing an additional error message
during clean up.
fn deferErrorCaptureExample () !void {

errdefer |err| {

std.debug.print ("the error is {s}\n",

{@errorName (err) }) ;

}

return error.DeferError;

test "errdefer unwinding" {
deferErrorExample (false) catch {};
deferErrorExample (true) catch {};
deferErrorCaptureExample () catch {};

}
test_errdefer.zig

$ zig test test errdefer.zig
1/1 test.errdefer unwinding...
start of function

end of function

start of function
encountered an error!
end of function

the error is DeferError
OK

All 1 tests passed.

Shell
See also:

e Errors

unreachable §

In Debug and ReleaseSafe mode unreachable emits a call to panic with the message
reached unreachable code.

In ReleaseFast and ReleaseSmall mode, the optimizer uses the assumption that
unreachable code will never be hit to perform optimizations.

Basics §

// unreachable is used to assert that control flow will never
reach a
// particular location:
test "basic math" {

const x = 1;

const y = 2;

if (x +y !'= 3) {

unreachable;

}
test_unreachable.zig

S zig test test unreachable.zig
1/1 test.basic math... OK
All 1 tests passed.

Shell

In fact, this is how std.debug.assert is implemented:

// This is how std.debug.assert is implemented
fn assert (ok: bool) void {
if (!ok) unreachable; // assertion failure

}

// This test will fail because we hit unreachable.
test "this will fail" {
assert (false);

}
test_assertion_failure.zig

$ zig test test_assertion_failure.zig
1/1 test.this will fail... thread 2453337 panic: reached
unreachable code
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen_ tmp/test assertion_ failure.zig:3:14:
0x2241e2 in assert (test)
if (!ok) unreachable; // assertion failure
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test assertion failure.zig:8:11:
0x2241%a in test.this will fail (test)
assert (false);
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x22ceb9 in
mainTerminal (test)
} else test fn.func();
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/test runner.zig:36:28: 0x22503a in
main (test)
return mainTerminal () ;
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x2246b2 in
posixCallMainAndExit (test)
root.main () ;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x224201 in
_start (test)

asm volatile (switch (native arch) ({
??2?2:2:2: 0x0 in 22?2 (2?2?27)
error: the following test command crashed:
/home/ci/actions-runner/ work/zig-bootstrap/out/zig-local-
cache/o0/3£6575b81£c83074e649e9b167fa28el/test

Shell

At Compile-Time §
const assert = @import ("std").debug.assert;
test "type of unreachable" ({

comptime {
// The type of unreachable is noreturn.

// However this assertion will still fail to compile
because
// unreachable expressions are compile errors.

assert (RTypeOf (unreachable) == noreturn);
}
test_comptime unreachable.zig
S zig test test comptime unreachable.zig
docgen_tmp/test_comptime unreachable.zig:10:16: error:

unreachable code

docgen_tmp/test_comptime unreachable.zig:10:24: note: control
flow is diverted here

assert (QTypeOf (unreachable) == noreturn);
Shell
See also:
e Zig Test
e Build Mode
e comptime
noreturn §

noreturn is the type of:

break

continue
return
unreachable
while (true) {}

When resolving types together, such as if clauses or switch prongs, the noreturn type is
compatible with every other type. Consider:

fn foo(condition: bool, b: u32) void {
const a = if (condition) b else return;
— = au
@panic ("do something with a");

}

test "noreturn" {
foo(false, 1);

}

test_noreturn.zig
$ zig test test noreturn.zig
1/1 test.noreturn... OK

All 1 tests passed.

Shell

Another use case for noreturn is the exit function:

const std = @import ("std");

const builtin = @import ("builtin");
const native arch = builtin.cpu.arch;
const expect = std.testing.expect;

const WINAPI: std.builtin.CallingConvention = if (native arch
== .x86) .Stdcall else .C;

extern "kernel32" fn ExitProcess(exit code: c_uint)

callconv (WINAPI) noreturn;

test "foo" {

const value = bar() catch ExitProcess(1l);
try expect (value == 1234);

fn bar() anyerror!u32 {
return 1234;

}

test_noreturn_from_exit.zig

S zig test test noreturn_ from exit.zig -target x86_ 64-windows
--test-no-exec

Shell

Functions §

const std = @import ("std");

const builtin = @import ("builtin");
const native arch = builtin.cpu.arch;
const expect = std.testing.expect;

// Functions are declared like this
fn add(a: 18, b: i8) 18 {
if (a == 0) {
return b;

return a + b;

}

// The export specifier makes a function externally visible in
the generated

// object file, and makes it use the C ABI.

export fn sub(a: i8, b: 18) i8 { return a - b; }

// The extern specifier is used to declare a function that
will be resolved

// at link time, when linking statically, or at runtime, when
linking

// dynamically. The quoted identifier after the extern keyword
specifies

// the library that has the function. (e.g. "c" -> libc.so)
// The callconv specifier changes the calling convention of
the function.

const WINAPI: std.builtin.CallingConvention = if (native_arch
== .x86) .Stdcall else .C;

extern "kernel32" fn ExitProcess(exit code: u32)

callconv (WINAPI) noreturn;

extern "c" fn atan2(a: f64, b: £f64) fo4;

// The @setCold builtin tells the optimizer that a function is
rarely called.
fn abort () noreturn {
@setCold(true);
while (true) {}
}

// The naked calling convention makes a function not have any
function prologue or epilogue.
// This can be useful when integrating with assembly.
fn _start() callconv(.Naked) noreturn {
abort () ;
}

// The inline calling convention forces a function to be
inlined at all call sites.
// 1If the function cannot be inlined, it is a compile-time
error.
fn shiftLeftOne(a: u32) callconv(.Inline) u32 {

return a << 1;

}

// The pub specifier allows the function to be visible when
importing.

// Another file can use @import and call sub2

pub fn sub2(a: i8, b: i8) i8 { return a - b; }

// Function pointers are prefixed with *const

const call2 op = *const fn (a: i8, b: i8) i8;

fn do op(fn_call: call2 op, opl: i8, op2: i8) i8 {
return fn call (opl, op2);

}

test "function" {
try expect(do op(add, 5, 6) == 11);
try expect(do op(sub2, 5, 6) == -1);
}

test_functions.zig

$ zig test test functions.zig
1/1 test.function... OK

All 1 tests passed.

Shell

There is a difference between a function body and a function pointer. Function bodies are
comptime-only types while function Pointers may be runtime-known.

Pass-by-value Parameters §

Primitive types such as Integers and Floats passed as parameters are copied, and then the
copy is available in the function body. This is called "passing by value". Copying a primitive
type is essentially free and typically involves nothing more than setting a register.

Structs, unions, and arrays can sometimes be more efficiently passed as a reference, since
a copy could be arbitrarily expensive depending on the size. When these types are passed
as parameters, Zig may choose to copy and pass by value, or pass by reference, whichever
way Zig decides will be faster. This is made possible, in part, by the fact that parameters
are immutable.

const Point = struct {
28 alS2,
y: 132,

}i

fn foo(point: Point) 132 {

// Here, ‘point’ could be a reference, or a copy. The
function body

// can ignore the difference and treat it as a value. Be
very careful

// taking the address of the parameter - it should be
treated as if

// the address will become invalid when the function
returns.

return point.x + point.y;

const expect = @import ("std").testing.expect;
test "pass struct to function" ({

try expect (foo(Point{ .x =1, .y =2 }) == 3);
}
test_pass_by reference or value.zig
$ zig test test pass by reference or value.zig
1/1 test.pass struct to function... OK

All 1 tests passed.

Shell

For extern functions, Zig follows the C ABI for passing structs and unions by value.

Function Parameter Type Inference §

Function parameters can be declared with anytype in place of the type. In this case the
parameter types will be inferred when the function is called. Use @TypeOf and @typelnfo
to get information about the inferred type.

const expect = @import ("std").testing.expect;
fn addFortyTwo (x: anytype) @TypeOf (x) {

return x + 42;

}

test "fn type inference" {

try expect (addFortyTwo (1) == 43);

try expect (@TypeOf (addFortyTwo (1)) == comptime int);
var y: 164 = 2;

try expect (addFortyTwo (y) == 44);

try expect (@TypeOf (addFortyTwo (y)) == 1i64);

}
test_fn type inference.zig
$ zig test test fn type inference.zig

1/1 test.fn type inference... OK
All 1 tests passed.

Shell

Function Reflection §
const std = @import ("std");
const math = std.math;

const testing = std.testing;

test "fn reflection" {

try
testing.expect (RtypeInfo (@TypeOf (testing.expect)) .Fn.params[0]
? == bool);

try
testing.expect (@typeInfo (@TypeOf (testing.tmpDir)) .Fn.return ty]
? == testing.TmpDir);

try

testing.expect (@typeInfo (€TypeOf (math.Log2Int)) .Fn.is generic)

7

4 |

test_fn_reflection.zig

S zig test test_fn reflection.zig
1/1 test.fn reflection... OK
All 1 tests passed.

Shell

Errors §

Error Set Type §

An error set is like an enum. However, each error name across the entire compilation gets
assigned an unsigned integer greater than 0. You are allowed to declare the same error
name more than once, and if you do, it gets assigned the same integer value.

The number of unique error values across the entire compilation should determine the size
of the error set type. However right now it is hard coded to be a u16. See #786.

You can coerce an error from a subset to a superset:
const std = @import ("std");

const FileOpenError = error {
AccessDenied,
OutOfMemory,
FileNotFound,

}i

const AllocationError = error {
OutOfMemory,
i

test "coerce subset to superset" {

const err = foo(AllocationError.OutOfMemory) ;
try std.testing.expect (err == FileOpenError.OutOfMemory) ;

fn foo(err: AllocationError) FileOpenError {
return err;

}

test_coerce_error_subset to_superset.zig

$ zig test test coerce error subset to superset.zig
1/1 test.coerce subset to superset... OK

All 1 tests passed.

Shell

But you cannot coerce an error from a superset to a subset:

https://github.com/ziglang/zig/issues/786

const FileOpenError = error {
AccessDenied,
OutOfMemory,
FileNotFound,

}i

const AllocationError = error {
OutOfMemory,
}i

test "coerce superset to subset" {
foo (FileOpenError.OutOfMemory) catch {};
}

fn foo(err: FileOpenError) AllocationError ({
return err;

}
test_coerce error_superset to_subset.zig

S zig test test coerce error superset to_subset.zig
docgen_tmp/test_coerce_error_ superset_to_subset.zig:16:12:
error: expected type 'error{OutOfMemory}', found
'error{AccessDenied, OutOfMemory, FileNotFound}"'

return err;

~

docgen_tmp/test_coerce_error_ superset_to_subset.zig:16:12:
note: 'error.AccessDenied' not a member of destination error
set

docgen_tmp/test_coerce_error_ superset_to_subset.zig:16:12:
note: 'error.FileNotFound' not a member of destination error
set

docgen_tmp/test_coerce_error_ superset_to_subset.zig:15:28:
note: function return type declared here

fn foo(err: FileOpenError) AllocationError {

referenced by:
test.coerce superset to subset:
docgen_tmp/test_coerce_error_superset_to_subset.zig:12:5
remaining reference traces hidden; use '-freference-trace'
to see all reference traces

Shell
There is a shortcut for declaring an error set with only 1 value, and then getting that value:
const err = error.FileNotFound;
single_value_error_set_shortcut.zig
This is equivalent to:
const err = (error {FileNotFound}) .FileNotFound;
single value error_set.zig

This becomes useful when using Inferred Error Sets.
The Global Error Set §

anyerror refers to the global error set. This is the error set that contains all errors in the
entire compilation unit. It is a superset of all other error sets and a subset of none of them.

You can coerce any error set to the global one, and you can explicitly cast an error of the
global error set to a non-global one. This inserts a language-level assert to make sure the
error value is in fact in the destination error set.

The global error set should generally be avoided because it prevents the compiler from
knowing what errors are possible at compile-time. Knowing the error set at compile-time is
better for generated documentation and helpful error messages, such as forgetting a
possible error value in a switch.

Error Union Type §

An error set type and normal type can be combined with the ! binary operator to form an
error union type. You are likely to use an error union type more often than an error set type
by itself.

Here is a function to parse a string into a 64-bit integer:

const std = @import ("std");
const maxInt = std.math.maxInt;

pub fn parseU64 (buf: []Jconst u8, radix: u8) !u64d {
var x: u64 = 0;

for (buf) |c| {
const digit = charToDigit(c);

if (digit >= radix) {
return error.InvalidChar;

}

// x *= radix
var ov = @mulWithOverflow(x, radix);
if (ov[l] != 0) return error.OverFlow;

// x += digit

ov = @addWwithOverflow(ov[0], digit);
if (ov[1l] != 0) return error.OverFlow;
x = ov[0];

return x;
}

fn charToDigit(c: u8) u8 {
return switch (c) {

OV o0 VYU =2 @ = V@Y,
'A' ... 'Z' =>c - 'A' + 10,
'a' ... 'z' => ¢ - 'a' + 10,

else => maxInt (u8),
}i
}

test "parse u64" {
const result = try parseU64("1234", 10);
try std.testing.expect (result == 1234);
}

error_union_parsing_u64.zig

S zig test error union parsing u64.zig
1/1 test.parse u64... OK
All 1 tests passed.

Shell

Notice the return type is !u64. This means that the function either returns an unsigned 64
bit integer, or an error. We left off the error set to the left of the !, so the error set is
inferred.

Within the function definition, you can see some return statements that return an error, and
at the bottom a return statement that returns a ué64. Both types coerce to anyerror!ué64.

What it looks like to use this function varies depending on what you're trying to do. One of
the following:

You want to provide a default value if it returned an error.
If it returned an error then you want to return the same error.
You know with complete certainty it will not return an error, so want to
unconditionally unwrap it.
e You want to take a different action for each possible error.

catch §

If you want to provide a default value, you can use the catch binary operator:

const parseU64 =
@import ("error union parsing u64.zig").parseU64;

Ju8) void {
parseU64 (str, 10) catch 13;

fn doAThing(str: [
const number =
_ = number; //
}

catch.zig

In this code, number will be equal to the successfully parsed string, or a default value of
13. The type of the right hand side of the binary catch operator must match the
unwrapped error union type, or be of type noreturn.

If you want to provide a default value with catch after performing some logic, you can
combine catch with named Blocks:

const parseU64 =
@import ("error union parsing u64.zig") .parseU64;

fn doAThing(str: []u8) void {
const number = parseU64 (str, 10) catch blk: {
// do things
break :blk 13;
i
_ = number; // number is now initialized

}

handle error with catch_block.zig.zig

try §

Let's say you wanted to return the error if you got one, otherwise continue with the
function logic:

const parseU64 =
@import ("error union parsing u64.zig") .parseU64;

fn doAThing(str:
const number

[Ju8) !void {
= number; //

parseU64 (str, 10) catch |err| return err;

}

catch_err_return.zig

There is a shortcut for this. The try expression:

const parseU64 =
@import ("error union_parsing u64.zig") .parseU64;

fn doAThing(str: []Ju8) !void {
const number = try parseU64 (str, 10);
_ = number; //

}
try.zig

try evaluates an error union expression. If it is an error, it returns from the current
function with the same error. Otherwise, the expression results in the unwrapped value.

Maybe you know with complete certainty that an expression will never be an error. In this
case you can do this:

const number = parseU64 ("1234", 10) catch unreachable;

Here we know for sure that "1234" will parse successfully. So we put the unreachable
value on the right hand side. unreachable generates a panic in Debug and ReleaseSafe

modes and undefined behavior in ReleaseFast and ReleaseSmall modes. So, while we're
debugging the application, if there was a surprise error here, the application would crash
appropriately.

You may want to take a different action for every situation. For that, we combine the if and
switch expression:

fn doAThing(str: []u8) void {
if (parseU64(str, 10)) |number| {
doSomethingWithNumber (number) ;
} else |err| switch (err) {
error.Overflow => {
// handle overflow...
I
// we promise that InvalidChar won't happen (or crash
in debug mode if it does)
error.InvalidChar => unreachable,
}
}

handle all error scenarios.zig

Finally, you may want to handle only some errors. For that, you can capture the unhandled
errors in the else case, which now contains a narrower error set:

fn doAnotherThing(str: []u8) error{InvalidChar}!void ({
if (parseU64 (str, 10)) |number| ({
doSomethingWithNumber (number) ;
} else |err| switch (err) {
error.Overflow => {
// handle overflow...
by

else => |leftover_err| return leftover_ err,
}

handle_some_error_scenarios.zig

You must use the variable capture syntax. If you don't need the variable, you can capture
with _ and avoid the switch.

fn doADifferentThing(str: []Ju8) wvoid ({

if (parseU64 (str, 10)) |number| ({
doSomethingWithNumber (number) ;
}else |_| |

// do as you'd like

}

handle no_error_scenarios.zig
errdefer §

The other component to error handling is defer statements. In addition to an unconditional
defer, Zig has errdefer, which evaluates the deferred expression on block exit path if and
only if the function returned with an error from the block.

Example:

fn createFoo (param: i132) !Foo {
const foo = try tryToAllocateFoo();
// now we have allocated foo. we need to free it if the
function fails.
// but we want to return it if the function succeeds.
errdefer deallocateFoo (foo);

const tmp buf = allocateTmpBuffer() orelse return
error.OutOfMemory;

// tmp_buf is truly a temporary resource, and we for sure
want to clean it up

// before this block leaves scope

defer deallocateTmpBuffer (tmp_ buf);

if (param > 1337) return error.InvalidParam;

// here the errdefer will not run since we're returning
success from the function.

// but the defer will run!

return foo;

}

errdefer _example.zig

The neat thing about this is that you get robust error handling without the verbosity and
cognitive overhead of trying to make sure every exit path is covered. The deallocation code
is always directly following the allocation code.

Common errdefer Slip-Ups §

It should be noted that errdefer statements only last until the end of the block they are
written in, and therefore are not run if an error is returned outside of that block:

const std = @import ("std");
const Allocator = std.mem.Allocator;

const Foo = struct {
data: u32,
}i

fn tryToAllocateFoo (allocator: Allocator) !*Foo {
return allocator.create (Foo) ;

fn deallocateFoo(allocator: Allocator, foo: *Foo) void {
allocator.destroy (foo) ;

fn getFooData () !'u32 {
return 666;

fn createFoo(allocator: Allocator, param: i32) !*Foo ({
const foo = getFoo: {
var foo = try tryToAllocateFoo (allocator);
errdefer deallocateFoo(allocator, foo); // Only lasts
until the end of getFoo

// Calls deallocateFoo on error
foo.data = try getFooDatal();

break :getFoo foo;
}i

// Outside of the scope of the errdefer, so
// deallocateFoo will not be called here
if (param > 1337) return error.InvalidParam;

return foo;

}

test "createFoo" ({

try std.testing.expectError (error.InvalidParam,
createFoo (std.testing.allocator, 2468));
}

test_errdefer_slip ups.zig

$ zig test test errdefer slip ups.zig
1/1 test.createFoo... OK
[gpa] (err): memory address 0x7f263e4fb000 leaked:
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test errdefer slip ups.zig:9:28:
0x22489f in tryToAllocateFoo (test)

return allocator.create (Foo);
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/test errdefer slip ups.zig:22:39:
0x224ab5 in createFoo (test)

var foo = try tryToAllocateFoo (allocator);

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/test errdefer slip ups.zig:39:62:
0x224cdd in test.createFoo (test)

try std.testing.expectError (error.InvalidParam,
createFoo (std.testing.allocator, 2468));

/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/test_runner.zig:176:28: 0x232c99 in
mainTerminal (test)

} else test_fn.func();
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/test_runner.zig:36:28: 0x229b8a in
main (test)

return mainTerminal () ;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x225202 in
posixCallMainAndExit (test)

root.main();
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:243:5: 0x224d51 in
_start (test)
asm volatile (switch (native_ arch) {

~

All 1 tests passed.

1 errors were logged.

1 tests leaked memory.

error: the following test command failed with exit code 1:
/home/ci/actions-runner/ work/zig-bootstrap/out/zig-local-
cache/0/10666e5d8b320aa9%e03£2764057c3609/test

Shell

To ensure that deallocateFoo is properly called when returning an error, you must add an
errdefer outside of the block:

const std = @import ("std");
const Allocator = std.mem.Allocator;

const Foo = struct {
data: u32,
}i

fn tryToAllocateFoo(allocator: Allocator) !*Foo {
return allocator.create (Foo);

fn deallocateFoo(allocator: Allocator, foo: *Foo) void {
allocator.destroy (foo);

fn getFooData () !'u32 {
return 666;

fn createFoo(allocator: Allocator, param: i32) !*Foo ({
const foo = getFoo: ({
var foo = try tryToAllocateFoo(allocator);
errdefer deallocateFoo(allocator, foo);

foo.data = try getFooDatal();

break :getFoo foo;
}i
// This lasts for the rest of the function
errdefer deallocateFoo(allocator, foo);

// Error is now properly handled by errdefer
if (param > 1337) return error.InvalidParam;

return foo;

test "createFoo" {

try std.testing.expectError (error.InvalidParam,
createFoo (std.testing.allocator, 2468));
}

test_errdefer_block.zig

$ zig test test_errdefer block.zig
1/1 test.createFoo... OK

All 1 tests passed.

Shell

The fact that errdefers only last for the block they are declared in is especially important
when using loops:

const std = @import ("std");
const Allocator = std.mem.Allocator;

const Foo = struct {
data: *u32
}i

fn getData () !'u32 ({
return 666;

}

fn genFoos (allocator: Allocator, num: usize) ![]Foo {
var foos = try allocator.alloc(Foo, num);
errdefer allocator.free(foos);

for (foos, 0..) [*foo, 1| {
foo.data = try allocator.create(u32);
// This errdefer does not last between iterations
errdefer allocator.destroy(foo.data);

// The data for the first 3 foos will be leaked
if (i >= 3) return error.TooManyFoos;

foo.data.* = try getData();
return foos;

test "genFoos" {
try std.testing.expectError (error.TooManyFoos,
genFoos (std.testing.allocator, 5));

}
test_errdefer loop leak.zig

$ zig test test_errdefer loop_ leak.zig
1/1 test.genFoos... OK
[gpal (err): memory address 0x7££f22a6a7000 leaked:
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen_ tmp/test errdefer loop leak.zig:17:40:
0x224d07 in genFoos (test)
foo.data = try allocator.create (u32);

/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test errdefer loop leak.zig:31:59:
0x2255fd in test.genFoos (test)

try std.testing.expectError (error.TooManyFoos,
genFoos (std.testing.allocator, 5));

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x233a59 in
mainTerminal (test)

} else test fn.func();
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:36:28: 0x22a68a in
main (test)

return mainTerminal () ;
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:564:22: 0x225b22 in
posixCallMainAndExit (test)

root.main () ;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x225671 in
_start (test)

asm volatile (switch (native arch) ({

~

[gpa] (err): memory address 0x7ff22a6a7004 leaked:
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test errdefer loop leak.zig:17:40:
0x224d07 in genFoos (test)

foo.data = try allocator.create (u32);
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test errdefer loop leak.zig:31:59:

UxZ2255td 1n test.genkoos (test)
try std.testing.expectError (error.TooManyFoos,
genFoos (std.testing.allocator, 5));

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x233a59 in
mainTerminal (test)

} else test fn.func();
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:36:28: 0x22a68a in
main (test)

return mainTerminal () ;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x225b22 in
posixCallMainAndExit (test)

root.main () ;
/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x225671 in
_start (test)
asm volatile (switch (native_arch) ({

~

[gpal (err): memory address 0x7ff22a6a7008 leaked:
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_tmp/test_errdefer loop leak.zig:17:40:
0x224d07 in genFoos (test)
foo.data = try allocator.create (u32);

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_ tmp/test errdefer loop leak.zig:31:59:
0x2255fd in test.genFoos (test)

try std.testing.expectError (error.TooManyFoos,
genFoos (std.testing.allocator, 5));

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/test_runner.zig:176:28: 0x233a59 in
mainTerminal (test)

} else test_ fn.func();
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/test runner.zig:36:28: 0x22a68a in
main (test)

return mainTerminal () ;
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:564:22: 0x225b22 in
posixCallMainAndExit (test)

root.main() ;
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:243:5: 0x225671 in
_start (test)
asm volatile (switch (native arch) {

A

All 1 tests passed.

3 errors were logged.

1 tests leaked memory.

error: the following test command failed with exit code 1:
/home/ci/actions-runner/ work/zig-bootstrap/out/zig-local-
cache/o/e094ad5el6ced3e70d4b87c42993e682/test

Shell

Special care must be taken with code that allocates in a loop to make sure that no memory
is leaked when returning an error:

const std = @import ("std");
const Allocator = std.mem.Allocator;

const Foo = struct {
data: *u32
}i

fn getData () !'u32 ({
return 666;

}

fn genFoos (allocator: Allocator, num: usize) ![]Foo {
var foos = try allocator.alloc(Foo, num);
errdefer allocator.free(foos);

// Used to track how many foos have been initialized

// (including their data being allocated)

var num_allocated: usize = 0;

errdefer for (foos[O..num allocated]) |[fool {
allocator.destroy(foo.data);

}i

for (foos, 0..) |*foo, i| {
foo.data = try allocator.create (u32);
num_allocated += 1;

if (i >= 3) return error.TooManyFoos;

foo.data.* = try getData();
return foos;

test "genFoos" {

try std.testing.expectError (error.TooManyFoos,
genFoos (std.testing.allocator, 5));
}

test_errdefer loop.zig

$ zig test test_errdefer loop.zig
1/1 test.genFoos... OK
All 1 tests passed.

Shell
A couple of other tidbits about error handling:

e These primitives give enough expressiveness that it's completely practical to have
failing to check for an error be a compile error. If you really want to ignore the error,
you can add catch unreachable and get the added benefit of crashing in Debug and
ReleaseSafe modes if your assumption was wrong.

e Since Zig understands error types, it can pre-weight branches in favor of errors not
occurring. Just a small optimization benefit that is not available in other languages.

See also:
o defer
. if

e switch

An error union is created with the ! binary operator. You can use compile-time reflection to
access the child type of an error union:

const expect = @import ("std").testing.expect;

test "error union" {
var foo: anyerror!i32 = undefined;

// Coerce from child type of an error union:
foo = 1234;

// Coerce from an error set:
foo = error.SomeError;

// Use compile-time reflection to access the payload type
of an error union:

try comptime
expect (QtypeInfo (@TypeOf (foo)) .ErrorUnion.payload == 132);

// Use compile-time reflection to access the error set
type of an error union:

try comptime
expect (€typeInfo (@TypeOf (foo)) .ErrorUnion.error_ set ==
anyerror) ;

}
test_error_union.zig

S zig test test_error union.zig
1/1 test.error union... OK
All 1 tests passed.

Shell

Merging Frror Sets §

Use the | | operator to merge two error sets together. The resulting error set contains the
errors of both error sets. Doc comments from the left-hand side override doc comments
from the right-hand side. In this example, the doc comments for C.PathNotFound is A
doc comment

This is especially useful for functions which return different error sets depending on
comptime branches. For example, the Zig standard library uses LinuxFileOpenError ||
WindowsFileOpenError for the error set of opening files.

const A = error{
NotDir,

/// A doc comment
PathNotFound,

}i

const B = error{
OutOfMemory,

/// B doc comment
PathNotFound,
}i

const C = A || B;

fn foo() Clvoid {
return error.NotDir;

test "merge error sets" {
if (foo()) {
@panic ("unexpected") ;
} else |err| switch (err) {
error.OutOfMemory => @panic ("unexpected"),
error.PathNotFound => @panic ("unexpected"),
error.NotDir => {},

}
test_merging_error_sets.zig
S zig test test merging error sets.zig

1/1 test.merge error sets... OK
All 1 tests passed.

Shell
Inferred Error Sets §

Because many functions in Zig return a possible error, Zig supports inferring the error set.
To infer the error set for a function, prepend the ! operator to the function’s return type,
like !T:

// With an inferred error set

pub fn add inferred(comptime T: type, a: T, b: T) !T {
const ov = @addWithOverflow(a, b);
if (ov[1l] != 0) return error.Overflow;
return ov[0];

}

// With an explicit error set

pub fn add explicit (comptime T: type, a: T, b: T) Error!T {
const ov = @addWithOverflow(a, b);
if (ov[1l] != 0) return error.Overflow;
return ov[0];

const Error = error {
Overflow,
}i

const std = @import ("std");
test "inferred error set" {
if (add_inferred(u8, 255, 1)) |_| unreachable else |err|

switch (err) {
error.Overflow => {}, // ok

}

test_inferred error_sets.zig

$ zig test test_inferred error_sets.zig
1/1 test.inferred error set... OK

All 1 tests passed.

Shell

When a function has an inferred error set, that function becomes generic and thus it
becomes trickier to do certain things with it, such as obtain a function pointer, or have an
error set that is consistent across different build targets. Additionally, inferred error sets are
incompatible with recursion.

In these situations, it is recommended to use an explicit error set. You can generally start
with an empty error set and let compile errors guide you toward completing the set.

These limitations may be overcome in a future version of Zig.

Error Return Traces §

Error Return Traces show all the points in the code that an error was returned to the
calling function. This makes it practical to use try everywhere and then still be able to
know what happened if an error ends up bubbling all the way out of your application.

pub fn main() !void {
try foo(1l2);
}

fn foo(x: i32) !void {
if (x >= 5) {
try bar();
} else {
try bang2();
}

fn bar() !void {
if (baz()) {
try quux();

} else |err| switch (err) ({
error.FileNotFound => try hello(),
}

fn baz () !void {
try bangl();
}

fn quux () !void {
try bang2();
}

fn hello() !void {
try bang2();
}

fn bangl () !void {
return error.FileNotFound;

}
fn bang2 () !void {
return error.PermissionDenied;

}

error_return_trace.zig

$ zig build-exe error return trace.zig
$./error return trace
error: PermissionDenied
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/error return trace.zig:34:5: 0x21e378
in bangl (error return trace)

return error.FileNotFound;
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/error return trace.zig:22:5: 0x21e483
in baz (error return trace)

try bangl();

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/error return trace.zig:38:5: Ox2le4a8
in bang2 (error return trace)

return error.PermissionDenied;
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_tmp/error_ return_ trace.zig:30:5: 0x21e513
in hello (error_return_ trace)

try bang2();

/home/ci/actions-runner/_work/zig-

bootstrap/zig/docgen_ tmp/error return trace.zig:17:31:

0x21e5e0 in bar (error return_ trace)
error.FileNotFound => try hello(),

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_tmp/error return_trace.zig:7:9: 0x2le6b0
in foo (error_return_ trace)

try bar();

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_tmp/error return_trace.zig:2:5: 0x21e708
in main (error return trace)

try foo(1l2);

Shell
Look closely at this example. This is no stack trace.

You can see that the final error bubbled up was PermissionDenied, but the original error

that started this whole thing was FileNotFound. In the bar function, the code handles the
original error code, and then returns another one, from the switch statement. Error Return
Traces make this clear, whereas a stack trace would look like this:

pub fn main() void {

}

fn

fn

fn

}

fn

}

fn

}

fn

}

fn

}

foo (12);

foo(x: i32) void {
if (x >= 5) {
bar();
} else {
bang2 () ;
}

bar () void {
if (baz()) {
quux () 7
} else {
hello();
}

baz () bool {
return bangl();

quux () void {
bang2 () ;

hello () void {
bang2 () ;

bangl () bool {
return false;

bang2 () void {
@panic ("PermissionDenied") ;

stack trace.zig

$ zig build-exe stack trace.zig
$./stack trace
thread 2453974 panic: PermissionDenied
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/stack trace.zig:38:5: 0x221c95 in
bang2 (stack trace)

@panic ("PermissionDenied") ;

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/stack trace.zig:30:10: O0x24efd8 in
hello (stack trace)

bang2 () ;

~

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/stack trace.zig:17:14: 0x22lcéc in
bar (stack_trace)

hello();

/home/ci/actions-runner/_work/zig-
bootstrap/zig/docgen_tmp/stack_trace.zig:7:12: 0x22036c in foo
(stack_trace)

bar();

~

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_ tmp/stack_trace.zig:2:8: 0x2le77d in main
(stack_trace)

foo (12);

~

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21e022 in
posixCallMainAndExit (stack trace)

root.main() ;

~

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21db71 in
_start (stack_trace)

asm volatile (switch (native_ arch) {

~
??2:2:?: 0x0 in ?2?? (227)

(process terminated by signal)

Shell

Here, the stack trace does not explain how the control flow in bar got to the hello () call
One would have to open a debugger or further instrument the application in order to find
out. The error return trace, on the other hand, shows exactly how the error bubbled up.

This debugging feature makes it easier to iterate quickly on code that robustly handles all
error conditions. This means that Zig developers will naturally find themselves writing
correct, robust code in order to increase their development pace.

Error Return Traces are enabled by default in Debug and ReleaseSafe builds and disabled
by default in ReleaseFast and ReleaseSmall builds.

There are a few ways to activate this error return tracing feature:

e Return an error from main

e An error makes its way to catch unreachable and you have not overridden the
default panic handler

e Use errorReturnTrace to access the current return trace. You can use
std.debug.dumpStackTrace to print it. This function returns comptime-known null
when building without error return tracing support.

Implementation Details §
To analyze performance cost, there are two cases:

e when no errors are returned
e when returning errors

For the case when no errors are returned, the cost is a single memory write operation, only
in the first non-failable function in the call graph that calls a failable function, i.e. when a
function returning void calls a function returning error. This is to initialize this struct in

the stack memory:
pub const StackTrace = struct {
index: usize,
instruction_ addresses: [N]usize,
bi
stack trace struct.zig

Here, N is the maximum function call depth as determined by call graph analysis.
Recursion is ignored and counts for 2.

Apointer to StackTrace is passed as a secret parameter to every function that can return
an error, but it's always the first parameter, so it can likely sit in a register and stay there.

That's it for the path when no errors occur. It's practically free in terms of performance.

When generating the code for a function that returns an error, just before the return
statement (only for the return statements that return errors), Zig generates a call to this
function:

// marked as "no-inline" in LLVM IR

fn zig return error(stack trace: *StackTrace) void ({
stack trace.instruction addresses[stack trace.index] =
@QreturnAddress () ;
stack trace.index = (stack trace.index + 1) % N;

}

zig_return_error_fn.zig

The cost is 2 math operations plus some memory reads and writes. The memory accessed
is constrained and should remain cached for the duration of the error return bubbling.

As for code size cost, 1 function call before a return statement is no big deal. Even so, I
have a plan to make the callto zig return error a tail call, which brings the code size
cost down to actually zero. What is a return statement in code without error return tracing
can become a jump instruction in code with error return tracing.

Optionals §

One area that Zig provides safety without compromising efficiency or readability is with
the optional type.

The question mark symbolizes the optional type. You can convert a type to an optional type
by putting a question mark in front of it, like this:

// normal integer
const normal int: i32 = 1234;

// optional integer
const optional int: ?i32 = 5678;

optional_integer.zig
Now the variable optional int could be an i32, or null.

Instead of integers, let's talk about pointers. Null references are the source of many
runtime exceptions, and even stand accused of being the worst mistake of computer
science.

Zig does not have them.

Instead, you can use an optional pointer. This secretly compiles down to a normal pointer,
since we know we can use 0 as the null value for the optional type. But the compiler can
check your work and make sure you don't assign null to something that can't be null.

Typically the downside of not having null is that it makes the code more verbose to write.
But, let's compare some equivalent C code and Zig code.

Task: call malloc, if the result is null, return null.

https://github.com/ziglang/zig/issues/690
https://www.lucidchart.com/techblog/2015/08/31/the-worst-mistake-of-computer-science/

C code

// malloc prototype included for reference
void *malloc(size_t size);

struct Foo *do_a_ thing(void) {
char *ptr = malloc(1234);
if (!ptr) return NULL;
//

}

call malloc_in_c.c

Zig code

// malloc prototype included for reference
extern fn malloc(size: usize) ?*u8;

fn doAThing () ?*Foo {
const ptr = malloc(1234) orelse return null;
_ =ptr; //

}

call malloc_from_zig.zig

Here, Zig is at least as convenient, if not more, than C. And, the type of "ptr" is *u8 not
*u8. The orelse keyword unwrapped the optional type and therefore ptr is guaranteed to
be non-null everywhere it is used in the function.

The other form of checking against NULL you might see looks like this:

void do_a thing(struct Foo *foo) {
// do some stuff

if (foo) {
do_something with foo (foo);

}

// do some stuff
}

checking null in c.c

In Zig you can accomplish the same thing:

const Foo = struct{};
fn doSomethingWithFoo (foo: *Foo) void { = foo; }

fn doAThing (optional foo: ?*Foo) void {
// do some stuff

if (optional foo) [fool| {
doSomethingWithFoo (foo) ;
}

// do some stuff
}

checking_null_in_zig.zig

Once again, the notable thing here is that inside the if block, foo is no longer an optional
pointer, it is a pointer, which cannot be null.

One benefit to this is that functions which take pointers as arguments can be annotated
with the "nonnull" attribute - attribute ((nonnull)) in GCC. The optimizer can

sometimes make better decisions knowing that pointer arguments cannot be null.

Optional Type §

An optional is created by putting 2 in front of a type. You can use compile-time reflection
to access the child type of an optional:

https://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html

const expect = @import ("std").testing.expect;

test "optional type" {
// Declare an optional and coerce from null:
var foo: ?i32 = null;

// Coerce from child type of an optional
foo = 1234;

// Use compile-time reflection to access the child type of
the optional:
try comptime expect (@typeInfo (RTypeOf (foo)) .Optional.child
== 1i32);
}
test_optional type.zig
$ zig test test optional type.zig
1/1 test.optional type... OK
All 1 tests passed.

Shell

null §

Just like undefined, nul1l has its own type, and the only way to use it is to cast it to a
different type:

const optional value: ?i32 = null;

null.zig

Optional Pointers §

An optional pointer is guaranteed to be the same size as a pointer. The null of the optional
is guaranteed to be address 0.

const expect = @import ("std").testing.expect;

test "optional pointers" {

// Pointers cannot be null. If you want a null pointer,
use the optional

// prefix ?° to make the pointer type optional.

var ptr: ?*i32 = null;

var x: 132 = 1;
ptr = &x;
try expect (ptr.?.* == 1);

// Optional pointers are the same size as normal pointers,
because pointer

// value 0 is used as the null value.

try expect (@sizeOf (?*i32) == @sizeOf (*1i32));
}

test_optional pointer.zig

S zig test test optional pointer.zig
1/1 test.optional pointers... OK
All 1 tests passed.

Shell

Casting §

A type cast converts a value of one type to another. Zig has Type Coercion for
conversions that are known to be completely safe and unambiguous, and Explicit Casts for
conversions that one would not want to happen on accident. There is also a third kind of
type conversion called Peer Type Resolution for the case when a result type must be
decided given multiple operand types.

Type Coercion §

Type coercion occurs when one type is expected, but different type is provided:

test "type coercion - variable declaration" {

var a: u8 = 1;
var b: ulé = a;
= b;

test "type coercion - function call" {
var a: u8 = 1;
foo(a);

}

fn foo(b: ul6) void {

,:b’
}
test "type coercion - @as builtin" {
var a: u8 = 1;
var b = @as(ulé6, a);
= b;

}
test_type_coercion.zig

$ zig test test type coercion.zig

1/3 test.type coercion - variable declaration... OK
2/3 test.type coercion - function call... OK
3/3 test.type coercion - @as builtin... OK

All 3 tests passed.

Shell

Type coercions are only allowed when it is completely unambiguous how to get from one
type to another, and the transformation is guaranteed to be safe. There is one exception,
which is C Pointers.

Type Coercion: Stricter Qualification §

Values which have the same representation at runtime can be cast to increase the strictness
of the qualifiers, no matter how nested the qualifiers are:

const - non-const to const is allowed
volatile - non-volatile to volatile is allowed
align - bigger to smaller alignment is allowed
error sets to supersets is allowed

These casts are no-ops at runtime since the value representation does not change.

test "type coercion - const qualification" {
var a: 132 = 1;
var b: *i32 = sa;
foo (b) ;

}

fn foo(_: *const 132) void {}

test no_op_casts.zig

S zig test test no_op casts.zig

1/1 test.type coercion - const qualification... OK

All 1 tests passed.

Shell

In addition, pointers coerce to const optional pointers:

const std = @import ("std");
const expect = std.testing.expect;
const mem = std.mem;

test "cast *[1l][*]const u8 to [*]const ?[*]const u8"

const window_name = [1][*]const u8{"window name"};

const x: [*]const ?[*]const u8 = &window name;

try expect (mem.eqgl (u8, std.mem.sliceTo(@as([*:0]const u8,

@ptrCast (x[0].?)), 0), "window name"));

}
test_pointer_coerce_const_optional.zig

$ zig test test pointer coerce const optional.zig

1/1 test.cast *[1][*]const u8 to [*]const ?[*]const u8... OK

All 1 tests passed.

Shell

Type Coercion: Integer and Float Widening §

Integers coerce to integer types which can represent every value of the old type, and
likewise Floats coerce to float types which can represent every value of the old type.

const std = @import ("std");

const builtin = @import ("builtin");
const expect = std.testing.expect;
const mem = std.mem;

test "integer widening" {

var a: u8 = 250;
var b: ulé = a;
var c: u32 = b;
var d: u64 = c;
var e: u64 = d;
var f: ul28 = e;
try expect(f == a);

}

test "implicit unsigned integer to signed integer" {
var a: u8 = 250;
var b: 116 = a;
try expect (b == 250);

}

test "float widening" {
var a: floe = 12.34;
var b: £32 = a;
var c: £64 = b;
var d: £f128 = c;
try expect(d == a);
}

test_integer widening.zig

S zig test test integer widening.zig
1/3 test.integer widening... OK

2/3 test.implicit unsigned integer to signed integer...

3/3 test.float widening... OK
All 3 tests passed.

Shell

Type Coercion: Float to Int §

OK

A compiler error is appropriate because this ambiguous expression leaves the compiler two

choices about the coercion.

e Cast 54.0 to comptime int resulting in @as (comptime int, 10), which is casted to

Qas (£32, 10)

e Cast 5 to comptime float resulting in @as (comptime float, 10.8), which is

casted to @as (£32, 10.8)

// Compile time coercion of float to int
test "implicit cast to comptime int" {
var f: £32 = 54.0 / 5;
:f;

}
test_ambiguous_coercion.zig

$ zig test test ambiguous coercion.zig
docgen tmp/test ambiguous coercion.zig:3:23: error: ambiguous
coercion of division operands 'comptime float' and
'comptime int'; non-zero remainder '4'
var f: £32 = 54.0 / 5;

~n Ann

Shell

Type Coercion: Slices, Arrays and Pointers §

const std = @import ("std");
const expect = std.testing.expect;

// You can assign constant pointers to arrays to a slice with
// const modifier on the element type. Useful in particular
for
// String literals.
test "*const [N]T to []const T" {
var x1: []Jconst u8 = "hello";
var x2: [Jconst u8 = &[5]u8{ 'h', 'e', '1', '1', 111 };
try expect (std.mem.eql (u8, x1, x2));

var y: [lconst £32 = &[2]1£f32{ 1.2, 3.4 };
try expect(y[0] == 1.2);
}

// Likewise, it works when the destination type is an error
union.
test "*const [N]T to E![]const T" {

var x1l: anyerror![]const u8 = "hello";

var x2: anyerror![]const u8 = &[5]u8{ 'h', 'e', '1', '1',
111 };

try expect (std.mem.eql (u8, try x1, try x2));

var y: anyerror![]lconst £32 = &[2]£32{ 1.2, 3.4 };
try expect ((try y) [0] == 1.2);
}

// Likewise, it works when the destination type is an

optional.
test "*const [N]T to ?[]const T" {
var xl: ?[]const u8 = "hello";

var x2: ?[]Jconst u8 = &[5]u8{ 'h', 'e', '1', '1l', 111 };
try expect(std.mem.eql (u8, x1.?, x2.%?));

var y: ?[]const £32 = &[2]£32{ 1.2, 3.4 };
try expect(y.?[0] == 1.2);
}

// In this cast, the array length becomes the slice length.
test "*[N]T to []T" {

var buf: [5]u8 = "hello".*;

const x: []Ju8 = &buf;

try expect(std.mem.eqgl (u8, x, "hello"));

const buf2 = [2]£32{ 1.2, 3.4 };

const x2: []Jconst £32 = &buf2;

try expect (std.mem.eql (£32, x2, &[2]1£32{ 1.2, 3.4 }));
}

// Single-item pointers to arrays can be coerced to many-item
pointers.
test "*[N]T to [*]T" {

var buf: [5]u8 = "hello".*;

const x: [*]u8 = &buf;

try expect(x[4] == 'o');

// x[5] would be an uncaught out of bounds pointer
dereference!

}

// Likewise, it works when the destination type is an
optional.
test "*[N]T to 2?2 [*]T" {
var buf: [5]u8 = "hello".*;
const x: ?[*]u8 = &buf;
try expect(x.?[4] == 'o');
}

// Single-item pointers can be cast to len-1 single-item
arrays.
test "*T to *[1]T" {
var x: 132 = 1234;
const y: *[1]1i32 = &x;
const z: [*]i32 = y;
try expect(z[0] == 1234);
}

test_coerce_slices_arrays_and_pointers.zig

$ zig test test coerce slices arrays and pointers.zig

1/7 test.*const [N]T to []Jconst T... OK
2/7 test.*const [N]T to E![]const T... OK
3/7 test.*const [N]T to ?[]const T... OK
4/7 test.*[N]T to []T... OK

5/7 test.*[N]T to [*]T... OK

6/7 test.*[N]T to ?[*]T... OK

7/7 test.*T to *[1]T... OK

All 7 tests passed.

Shell
See also:

e C Pointers

Type Coercion: Optionals §

The payload type of Optionals, as well as null, coerce to the optional type.

const std = @import ("std");
const expect = std.testing.expect;

test "coerce to optionals" {
const x: ?132 = 1234;
const y: ?i32 = null;

try expect(x.? == 1234);
try expect(y == null);
}

test_coerce_optionals.zig

$ zig test test coerce optionals.zig
1/1 test.coerce to optionals... OK
All 1 tests passed.

Shell

It works nested inside the Error Union Type, too:

const std = @import ("std");
const expect = std.testing.expect;

test "coerce to optionals wrapped in error union" {
const x: anyerror!?i32 = 1234;
const y: anyerror!?i32 = null;

try expect ((try x).? == 1234);
try expect ((try y) == null);

}

test_coerce optional wrapped error union.zig

S zig test test coerce optional wrapped error union.zig
1/1 test.coerce to optionals wrapped in error union... OK

All 1 tests passed.

Shell

Type Coercion: Error Unions §

The payload type of an Error Union Type as well as the Error Set Type coerce to the error
union type:

const std = @import ("std");
const expect = std.testing.expect;

test "coercion to error unions" {

const x: anyerror!i32 = 1234;
const y: anyerror!i32 = error.Failure;
try expect ((try x) == 1234);

try std.testing.expectError (error.Failure, y);

test_coerce to_error_union.zig

$ zig test test_coerce_to_error_union.zig
1/1 test.coercion to error unions... OK
All 1 tests passed.

Shell

Type Coercion: Compile-Time Known Numbers §

When a number is comptime-known to be representable in the destination type, it may be
coerced:

const std = @import ("std");
const expect = std.testing.expect;

test "coercing large integer type to smaller one when value is
comptime-known to fit" {

const x: u6d4d = 255;

const y: u8 = x;

try expect(y == 255);
}

test_coerce large to small.zig

S zig test test coerce large to small.zig

1/1 test.coercing large integer type to smaller one when value
is comptime-known to fit... OK

All 1 tests passed.

Shell

Type Coercion: Unions and Enums §

Tagged unions can be coerced to enums, and enums can be coerced to tagged unions
when they are comptime-known to be a field of the union that has only one possible value,
such as void:

const std = @import ("std");
const expect = std.testing.expect;

const E = enum {
one,
two,
three,

}i

const U = union(E) {
one: 132,
two: £32,
three,

}i

const U2 = union(enum) {
a: void,
b: £32,

fn tag(self: U2) usize {
switch (self) {
.a => return 1,
.b => return 2,

}i

test "coercion between unions and enums" {
var u = U{ .two = 12.34 };
var e: E = u; // coerce union to enum
try expect(e == E.two);

const three = E.three;
var u_2: U = three; // coerce enum to union

try expect(u_2 == E.three);

var u_3: U = .three; // coerce enum literal to union

try expect(u_3 == E.three);

var u_4: U2 = .a; // coerce enum literal to union with
inferred enum tag type.

try expect(u_4.tag() == 1);

// The following example is invalid.

// error: coercion from enum '@TypeOf (.enum literal)' to
union 'test coerce_unions_enum.U2' must initialize '£32' field
T

//var u_5: U2 = .b;

//try expect(u_5.tag() == 2);

}

test_coerce unions_enums.zig

S zig test test coerce unions_enums.zig
1/1 test.coercion between unions and enums... OK
All 1 tests passed.

Shell
See also:

union
e enum

Type Coercion: undefined §
undefined can be coerced to any type.

Type Coercion: Tuples to Arrays §

Tuples can be coerced to arrays, if all of the fields have the same type.

const std = @import ("std");
const expect = std.testing.expect;

const Tuple = struct{ u8, u8 };
test "coercion from homogenous tuple to array" {

const tuple: Tuple = .{5, 6};
const array: [2]u8 = tuple;
= array;

}
test_coerce_tuples_arrays.zig

$ zig test test coerce tuples arrays.zig
1/1 test.coercion from homogenous tuple to array... OK
All 1 tests passed.

Shell

Explicit Casts §

Explicit casts are performed via Builtin Functions. Some explicit casts are safe; some are
not. Some explicit casts perform language-level assertions; some do not. Some explicit
casts are no-ops at runtime; some are not.

(@bitCast - change type but maintain bit representation

@alignCast - make a pointer have more alignment

(@enumFromlnt - obtain an enum value based on its integer tag value
@errorFromlInt - obtain an error code based on its integer value
(@errSetCast - convert to a smaller error set

@floatCast - convert a larger float to a smaller float

(@floatFromlInt - convert an integer to a float value

(@intCast - convert between integer types

(@intFromBool - convert true to 1 and false to 0

@intFromEnum - obtain the integer tag value of an enum or tagged union
@intFromFError - obtain the integer value of an error code
@intFromFloat - obtain the integer part of a float value

(@intFromPtr - obtain the address of a pointer

(@ptrFromlint - convert an address to a pointer

(@ptrCast - convert between pointer types

(@truncate - convert between integer types, chopping off bits

Peer Type Resolution §
Peer Type Resolution occurs in these places:

switch expressions

if expressions

while expressions

for expressions

Multiple break statements in a block

Some binary operations

This kind of type resolution chooses a type that all peer types can coerce into. Here are
some examples:

const std = @import ("std");
const expect = std.testing.expect;
const mem = std.mem;

test "peer resolve int widening" {
var a: 18 = 12;
var b: 1l6 = 34;
var ¢ = a + b;
try expect(c == 46);
try expect (@TypeOf (c) == il6);
}

test "peer resolve arrays of different size to const slice" {
try expect (mem.eql (u8, boolToStr (true), "true"));
try expect (mem.eql (u8, boolToStr (false), "false"));
try comptime expect (mem.eql (u8, boolToStr (true), "true"));

try comptime expect (mem.eql (u8, boolToStr (false),
"false"));
}
fn boolToStr (b: bool) []Jconst u8 {

return if (b) "true" else "false";

test "peer resolve array and const slice" {
try testPeerResolveArrayConstSlice (true);
try comptime testPeerResolveArrayConstSlice(true);

}

fn testPeerResolveArrayConstSlice(b: bool) !void {
const valuel = if (b) "aoeu" else @as([]const u8, "zz");
const value2 = if (b) Qas([]const u8, "zz") else "aoceu";
try expect (mem.eql (u8, valuel, "aoeu"));
try expect (mem.eql (u8, value2, "zz"));

test "peer type resolution: ?T and T" {
try expect (peerTypeTAndOptionalT (true, false).? == 0);
try expect (peerTypeTAndOptionalT (false, false).? == 3);
comptime {
try expect (peerTypeTAndOptionalT (true, false).? == 0);
try expect (peerTypeTAndOptionalT (false, false).? ==
3);

}
fn peerTypeTAndOptionalT(c: bool, b: bool) ?usize {
if (c) {
return if (b) null else @as(usize, 0);

return Qas(usize, 3);

test "peer type resolution: *[0]u8 and []const u8" {
try expect (peerTypeEmptyArrayAndSlice (true, "hi").len ==
0) 7
try expect (peerTypeEmptyArrayAndSlice (false, "hi").len ==
1);
comptime {
try expect (peerTypeEmptyArrayAndSlice (true, "hi").len
== O);
try expect (peerTypeEmptyArrayAndSlice (false, "hi").len

fn peerTypeEmptyArrayAndSlice (a: bool, slice: []const u8)
[Jconst u8 {
if (a) |
return &[_Ju8{};

return slice[0..1];
}
test "peer type resolution: *[0]Ju8, []const u8, and anyerror!
[Ju8™ {
{
var data = "hi".*;
const slice = data[0..];
try expect ((try
peerTypeEmptyArrayAndSliceAndError (true, slice)).len == 0);
try expect ((try
peerTypeEmptyArrayAndSliceAndError (false, slice)).len == 1);
}

comptime {

var data = "hi".*;

const slice = data[0..];

try expect ((try
peerTypeEmptyArrayAndSliceAndError (true, slice)).len == 0);

try expect ((try
peerTypeEmptyArrayAndSliceAndError (false, slice)).len == 1);
}
}

fn peerTypeEmptyArrayAndSliceAndError (a: bool, slice: []u8)
anyerror! [Ju8 {
if (a) {

return &[Ju8{};

return slice[0..1];

}

test "peer type resolution: *const T and ?*T" {
const a: *const usize = @ptrFromInt (0x123456780)
const b: ?*usize = @ptrFromInt (0x123456780);
try expect(a == b);
try expect(b == a);
}

test_peer_type_resolution.zig

$ zig test test peer type resolution.zig

1/7 test.peer resolve int widening... OK

2/7 test.peer resolve arrays of different size to const
slice... OK

3/7 test.peer resolve array and const slice... OK

4/7 test.peer type resolution: ?T and T... OK

5/7 test.peer type resolution: *[0]u8 and []const u8... OK
6/7 test.peer type resolution: *[0]u8, []const u8, and
anyerror![]Ju8... OK

7/7 test.peer type resolution: *const T and ?*T... OK

All 7 tests passed.

Shell

Zero Bit Types §
For some types, @sizeOf is 0:

void

The Integers u0 and io0.

Arrays and Vectors with len 0, or with an element type that is a zero bit type.
An enum with only 1 tag.

A struct with all fields being zero bit types.

A union with only 1 field which is a zero bit type.

These types can only ever have one possible value, and thus require 0 bits to represent.
Code that makes use of these types is not included in the final generated code:

export fn entry() void ({

var x: void = {};
var y: void = {};
X = y;

}
zero_bit_types.zig

When this turns into machine code, there is no code generated in the body of entry, even
in Debug mode. For example, on x86_64:

0000000000000010 <entry>:

10: 55 push Srbp

11: 48 89 e5 mov $rsp, $rbp
14: 5d pop Srbp

15: c3 retq

These assembly instructions do not have any code associated with the void values - they
only perform the function call prologue and epilogue.

void §

void can be useful for instantiating generic types. For example, given a Map (Key, Value),
one can pass void for the value type to make it into a Set:

const std = @import ("std");
const expect = std.testing.expect;

test "turn HashMap into a set with void" {
var map = std.AutoHashMap (i32,

void) .init (std.testing.allocator);
defer map.deinit();

try map.put(1l, {});
try map.put(2, {});

try expect (map.contains(2));
try expect (!map.contains(3));

= map.remove (2);
try expect (!map.contains(2));

}
test_void_in_hashmap.zig

S zig test test_void_in_hashmap.zig
1/1 test.turn HashMap into a set with void... OK
All 1 tests passed.

Shell

Note that this is different from using a dummy value for the hash map value. By using
void as the type of the value, the hash map entry type has no value field, and thus the hash
map takes up less space. Further, all the code that deals with storing and loading the value
is deleted, as seen above.

void is distinct from anyopaque. void has a known size of 0 bytes, and anyopaque has an
unknown, but non-zero, size.

Expressions of type void are the only ones whose value can be ignored. For example:

test "ignoring expression value" {
foo () ;
}

fn foo() 132 {
return 1234;
}

test_expression_ignored.zig

$ zig test test expression ignored.zig
docgen tmp/test expression ignored.zig:2:8: error: value of
type 'i32' ignored

foo ()

~na N

docgen tmp/test expression ignored.zig:2:8: note: all non-void
values must be used
docgen_tmp/test_expression_ignored.zig:2:8: note: this error
can be suppressed by assigning the value to ' '

Shell

However, if the expression has type void, there will be no error. Function return values
can also be explicitly ignored by assigning them to .

test "void is ignored" {
returnsVoid() ;

}

test "explicitly ignoring expression value" ({
_ = foo();

}

fn returnsVoid() void {}

fn foo() i32 {
return 1234;

}

test_void_ignored.zig

$ zig test test void ignored.zig

1/2 test.void is ignored... OK

2/2 test.explicitly ignoring expression value... OK
All 2 tests passed.

Shell

Result Location Semantics §

TODO add documentation for this

usingnamespace §

usingnamespace is a declaration that mixes all the public declarations of the operand,
which must be a struct, union, enum, or opaque, into the namespace:

test "using std namespace" {
const S = struct {
usingnamespace @import ("std");
}i
try S.testing.expect (true);
}

test usingnamespace.zig

$ zig test test usingnamespace.zig
1/1 test.using std namespace... OK
All 1 tests passed.

Shell

usingnamespace has an important use case when organizing the public API of a file or
package. For example, one might have c.zig with all of the C imports:

pub usingnamespace @cImport ({
@cInclude ("epoxy/gl.h") ;
@cInclude ("GLFW/glfw3.h");
@cDefine ("STBI_ONLY PNG", "");
@cDefine ("STBI_NO_ STDIO", "");
@cInclude ("stb image.h");

1)

c.zig
The above example demonstrates using pub to qualify the usingnamespace additionally

makes the imported declarations pub. This can be used to forward declarations, giving
precise control over what declarations a given file exposes.

comptime §

Zig places importance on the concept of whether an expression is known at compile-time.
There are a few different places this concept is used, and these building blocks are used to
keep the language small, readable, and powerful.

Introducing the Compile-Time Concept §

Compile-Time Parameters §

Compile-time parameters is how Zig implements generics. It is compile-time duck typing.

https://github.com/ziglang/zig/issues/2809

fn max (comptime T: type, a: T, b: T) T {
return if (a > b) a else b;

}

fn gimmeTheBiggerFloat(a: £32, b: £32) £32 {
return max (£32, a, b);

}

fn gimmeTheBiggerInteger(a: u64, b: u64) u6d {
return max(ué4, a, b);

}

compile-time_duck_typing.zig

In Zig, types are first-class citizens. They can be assigned to variables, passed as
parameters to functions, and returned from functions. However, they can only be used in
expressions which are known at compile-time, which is why the parameter T in the above
snippet must be marked with comptime.

A comptime parameter means that:

o At the callsite, the value must be known at compile-time, or it is a compile error.
e In the function definition, the value is known at compile-time.

For example, if we were to introduce another function to the above snippet:

fn max (comptime T: type, a: T, b: T) T {
return if (a > b) a else b;
}
test "try to pass a runtime type" {
foo(false);
}
fn foo(condition: bool) wvoid {
const result = max(
if (condition) £32 else ub4,
1234,
5678) ;
_ = result;
}

test_unresolved comptime value.zig

$ zig test test_unresolved comptime value.zig
docgen_tmp/test_unresolved_comptime value.zig:9:13: error:
unable to resolve comptime value
if (condition) £32 else u64,

docgen_tmp/test_unresolved_comptime value.zig:9:13: note:
condition in comptime branch must be comptime-known
referenced by:

test.try to pass a runtime type:
docgen_tmp/test_unresolved_comptime value.zig:5:5

remaining reference traces hidden; use '-freference-trace'
to see all reference traces

Shell

This is an error because the programmer attempted to pass a value only known at run-time
to a function which expects a value known at compile-time.

Another way to get an error is if we pass a type that violates the type checker when the
function is analyzed. This is what it means to have compile-time duck typing.

For example:

fn max (comptime T: type, a: T, b: T) T {
return if (a > b) a else b;

}

test "try to compare bools" {
_ = max(bool, true, false);

}

test_comptime_mismatched_type.zig

$ zig test test comptime mismatched type.zig
docgen tmp/test comptime mismatched type.zig:2:18: error:
operator > not allowed for type 'bool'

return if (a > b) a else b;

~aPNan

Shell

On the flip side, inside the function definition with the comptime parameter, the value is
known at compile-time. This means that we actually could make this work for the bool
type if we wanted to:

fn max (comptime T: type, a: T, b: T) T {
if (T == bool) {
return a or b;
} else if (a > b) {
return a;
} else {
return b;
}
}
test "try to compare bools" {
try @import ("std").testing.expect (max(bool, false, true)
== true);

}

test_comptime max_with bool.zig

$ zig test test comptime max with bool.zig
1/1 test.try to compare bools... OK

All 1 tests passed.

Shell

This works because Zig implicitly inlines if expressions when the condition is known at
compile-time, and the compiler guarantees that it will skip analysis of the branch not taken.

This means that the actual function generated for max in this situation looks like this:
fn max(a: bool, b: bool) bool {
return a or b;

}

compiler generated function.zig

All the code that dealt with compile-time known values is eliminated and we are left with
only the necessary run-time code to accomplish the task.

This works the same way for switch expressions - they are implicitly inlined when the
target expression is compile-time known.

Compile-Time Variables §

In Zig, the programmer can label variables as comptime. This guarantees to the compiler
that every load and store of the variable is performed at compile-time. Any violation of this
results in a compile error.

This combined with the fact that we can inline loops allows us to write a function which
is partially evaluated at compile-time and partially at run-time.

For example:

const expect = @import ("std").testing.expect;

const CmdFn = struct {
name: []const u8,
func: fn(i32) 132,
}i

const cmd fns = []CmdFn{
CmdFn {.name = "one", .func = one},
CmdFn {.name = "two", .func = two},
CmdFn {.name = "three", .func = three},

fn one(value: 132) 132 { return value + 1; }
fn two(value: 132) 132 { return value + 2; }
fn three(value: i32) 132 { return value + 3; }

fn performFn (comptime prefix char: u8, start value: 132) 132 {
var result: i32 = start value;

comptime var i = 0;
inline while (i < cmd fns.len) : (i += 1) {
if (cmd_fns[i].name[O] == prefix_char) {

result = cmd_fns[i].func(result);
}
}

return result;

}

test "perform fn" {

try expect (performFn('t', 1) == 6);
try expect (performFn('o', 0) == 1);
try expect (performFn('w', 99) == 99);

}
test_comptime_evaluation.zig

S zig test test comptime evaluation.zig
1/1 test.perform fn... OK
All 1 tests passed.

Shell

This example is a bit contrived, because the compile-time evaluation component is
unnecessary; this code would work fine if it was all done at run-time. But it does end up
generating different code. In this example, the function performrn is generated three
different times, for the different values of prefix char provided:

// From the line:
// expect (performFn('t', 1) == 6);
fn performFn(start_ value: i32) i32 {
var result: i32 = start value;
result = two(result);
result = three(result);
return result;

}
performFn_1

// From the line:

// expect (performFn('o', 0) == 1);

fn performFn(start value: i32) i32 {
var result: i32 = start value;
result = one(result);

return result;

}
performFn_2

// From the line:

// expect (performFn('w', 99) == 99);
fn performFn(start value: i32) i32 {
var result: i32 = start value;

return result;

}

performFn 3

Note that this happens even in a debug build; in a release build these generated functions
still pass through rigorous LLVM optimizations. The important thing to note, however, is

not that this is a way to write more optimized code, but that it is a way to make sure that
what should happen at compile-time, does happen at compile-time. This catches more
errors and as demonstrated later in this article, allows expressiveness that in other
languages requires using macros, generated code, or a preprocessor to accomplish.

Compile-Time Expressions §

In Zig, it matters whether a given expression is known at compile-time or run-time. A
programmer can use a comptime expression to guarantee that the expression will be
evaluated at compile-time. If this cannot be accomplished, the compiler will emit an error.
For example:

extern fn exit () noreturn;

test "foo" {
comptime {
exit();
}
}

test_comptime_call extern_function.zig

S zig test test comptime call extern function.zig
docgen_tmp/test_comptime call extern function.zig:5:13:
error: comptime call of extern function

exit();

Shell

It doesn't make sense that a program could call exit () (or any other external function) at
compile-time, so this is a compile error. However, a comptime expression does much more
than sometimes cause a compile error.

Within a comptime expression:

All variables are comptime variables.
All i f, while, for, and switch expressions are evaluated at compile-time, or emit a
compile error if this is not possible.

e All return and try expressions are invalid (unless the function itself is called at
compile-time).

e All code with runtime side effects or depending on runtime values emits a compile
error.

e All function calls cause the compiler to interpret the function at compile-time, emitting
a compile error if the function tries to do something that has global runtime side
effects.

This means that a programmer can create a function which is called both at compile-time
and run-time, with no modification to the function required.

Let's look at an example:
const expect = @import ("std").testing.expect;

fn fibonacci (index: u32) u32 {
if (index < 2) return index;
return fibonacci(index - 1) + fibonacci (index - 2);

}

test "fibonacci" {
// test fibonacci at run-time
try expect (fibonacci (7) == 13);

// test fibonacci at compile-time
try comptime expect (fibonacci(7) == 13);

}
test_fibonacci_recursion.zig
$ zig test test_fibonacci_recursion.zig

1/1 test.fibonacci... OK
All 1 tests passed.

Shell

Imagine if we had forgotten the base case of the recursive function and tried to run the
tests:

const expect = @import ("std").testing.expect;

fn fibonacci (index: u32) u32 {
//if (index < 2) return index;
return fibonacci(index - 1) + fibonacci (index - 2);

}

test "fibonacci" {
try comptime expect (fibonacci(7) == 13);

}
test_fibonacci comptime overflow.zig

S zig test test fibonacci comptime overflow.zig
docgen_ tmp/test fibonacci comptime overflow.zig:5:28: error:
overflow of integer type 'u32' with value '-1'

return fibonacci (index - 1) + fibonacci (index - 2);

docgen tmp/test fibonacci comptime overflow.zig:5:21: note:
called from here (7 times)
return fibonacci (index - 1) + fibonacci (index - 2);

docgen tmp/test fibonacci comptime overflow.zig:9:34: note:
called from here
try comptime expect (fibonacci(7) == 13);

Shell

The compiler produces an error which is a stack trace from trying to evaluate the function
at compile-time.

Luckily, we used an unsigned integer, and so when we tried to subtract 1 from 0, it
triggered undefined behavior, which is always a compile error if the compiler knows it
happened. But what would have happened if we used a signed integer?

const assert = @import ("std").debug.assert;

fn fibonacci (index: 132) 132 {
//if (index < 2) return index;
return fibonacci(index - 1) + fibonacci (index - 2);

}

test "fibonacci" {
try comptime assert (fibonacci(7) == 13);

}
fibonacci comptime_infinite recursion.zig

The compiler is supposed to notice that evaluating this function at compile-time took more
than 1000 branches, and thus emits an error and gives up. If the programmer wants to
increase the budget for compile-time computation, they can use a built-in function called
(@setEvalBranchQuota to change the default number 1000 to something else.

However, there is a design flaw in the compiler causing it to stack overflow instead of
having the proper behavior here. I'm terribly sorry about that. I hope to get this resolved
before the next release.

What if we fix the base case, but put the wrong value in the expect line?
const assert = @import ("std").debug.assert;

fn fibonacci (index: 132) 132 {
if (index < 2) return index;
return fibonacci (index - 1) + fibonacci (index - 2);

}

test "fibonacci" {
try comptime assert (fibonacci (7) == 99999);

https://github.com/ziglang/zig/issues/13724

test_fibonacci_comptime unreachable.zig

$ zig test test_fibonacci_comptime_unreachable.zig
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/std/debug.zig:343:14: error:
reached unreachable code

if (!ok) unreachable; // assertion failure
docgen_tmp/test_fibonacci_comptime_unreachable.zig:9:24: note:
called from here

Shell

At container level (outside of any function), all expressions are implicitly comptime
expressions. This means that we can use functions to initialize complex static data. For
example:

const first 25 primes = firstNPrimes (25);
const sum_of first 25 primes = sum(&first 25 primes);

fn firstNPrimes (comptime n: usize) [n]i32 {
var prime list: [n]i32 = undefined;
var next index: usize = 0;
var test number: i32 = 2;
while (next_index < prime_list.len)
var test prime index: usize = 0;
var is_prime = true;
while (test_prime index < next index)
(test_prime index += 1) {
if (test_number % prime list[test prime index] ==

(test_number += 1) {

0) {
is prime = false;
break;
}
}
if (is_prime) {
prime_ list[next index] = test number;
next_index += 1;
}
}
return prime_ list;

}

fn sum(numbers: []Jconst 1i32) 132 {
var result: 132 = 0;
for (numbers) |x| {
result += x;
}
return result;

}

test "variable values" {

try Q@import ("std").testing.expect (sum of first 25 primes
== 1060) ;
}

test_container-level comptime expressions.zig
S zig test test container-level comptime expressions.zig
1/1 test.variable values... OK

All 1 tests passed.

Shell

When we compile this program, Zig generates the constants with the answer pre-
computed. Here are the lines from the generated LLVM IR:

@0
e1
4

internal unnamed addr constant [25 x i32] [i32 2, 132 3, i32 5,
internal unnamed_addr constant 132 1060

i32 7

i

Note that we did not have to do anything special with the syntax of these functions. For
example, we could call the sum function as is with a slice of numbers whose length and
values were only known at run-time.

Generic Data Structures §

Zig uses these capabilities to implement generic data structures without introducing any
special-case syntax. If you followed along so far, you may already know how to create a
generic data structure.

Here is an example of a generic List data structure.

fn List (comptime T: type) type {
return struct {
items: []T,
len: usize,
}i
}

// The generic List data structure can be instantiated by
passing in a type:
var buffer: [10]i32 = undefined;
var list = List(i32){
.items = g&buffer,
.len = 0,
}i

generic_data_structure.zig

That's it. It's a function that returns an anonymous struct. To keep the language small and
uniform, all aggregate types in Zig are anonymous. For the purposes of error messages and
debugging, Zig infers the name "List (132) " from the function name and parameters
invoked when creating the anonymous struct.

To explicitly give a type a name, we assign it to a constant.

const Node = struct {
next: ?*Node,
name: []Jconst u8,

}i

var node a = Node({
.next = null,
.name = &"Node A",
}i

var node b = Node({
.next = &node_a,
.name = &"Node B",
}i

anonymous_struct_name.zig

In this example, the Node struct refers to itself. This works because all top level
declarations are order-independent. As long as the compiler can determine the size of the
struct, it is free to refer to itself. In this case, Node refers to itself as a pointer, which has a
well-defined size at compile time, so it works fine.

Case Study: printin Zig §
Putting all of this together, let's see how print works in Zig.
const print = Q@import ("std") .debug.print;

const a_number: 132 = 1234;
const a_string = "foobar";

pub fn main() void {
print ("here is a string: '{s}' here is a number: {}\n",
{a_string, a_number});

}
print.zig
$ zig build-exe print.zig

$./print
here is a string: 'foobar' here is a number: 1234

Shell

Let's crack open the implementation of this and see how it works:

const Writer = struct {
/// Calls print and then flushes the buffer.
pub fn print(self: *Writer, comptime format: []Jconst u8§,
args: anytype) anyerror!void {
const State = enum {
start,
open_brace,
close_brace,
}i

comptime var start index: usize = 0;
comptime var state = State.start;
comptime var next arg: usize = 0;

inline for (format, 0..) |c, i| {
switch (state) {
State.start => switch (c) {
o=
if (start_index < i) try
self.write (format[start index..i]);
state = State.open_brace;
b
1o=>
if (start_index < i) try
self.write (format[start index..i]);
state = State.close_brace;
b
else => {},
b
State.open_brace => switch (c) {
o=
state = State.start;
start_index = i;
b
1o=>
try self.printValue (args[next_argl);
next_arg += 1;
state = State.start;
start_index = i + 1;

st o=>
continue;

else => @compileError ("Unknown format
character: " ++ [1]u8{c}),
by
State.close_brace => switch (c) {
Pro=>
state = State.start;
start_index = i;
by
else => @compileError ("Single '}'
encountered in format string"),
b
}
}
comptime {
if (args.len != next arg) {
@QcompileError ("Unused arguments");
}
if (state != State.start) ({
QcompileError ("Incomplete format string: " ++
format) ;

}
if (start index < format.len) {
try self.write(format[start index..format.len]);
}
try self.flush();

fn write(self: *Writer, value: []const u8) !void {
_ = self;
_ = value;

pub fn printvValue (self: *Writer, value: anytype) !void {
_ = self;
_ = value;
}
fn flush(self: *Writer) !void {
_ = self;
}
}i
poc_print_fn.zig

This is a proof of concept implementation; the actual function in the standard library has
more formatting capabilities.

Note that this is not hard-coded into the Zig compiler; this is userland code in the standard
library.

When this function is analyzed from our example code above, Zig partially evaluates the
function and emits a function that actually looks like this:

pub fn print(self: *Writer, arg0: []Jconst u8, argl: i32) !void
{

try self.write("here is a string: '");
try self.printValue (arg0) ;
try self.write("' here is a number: ");

try self.printValue(argl);
try self.write("\n");
try self.flush();

}

Emitted print Function

printvalue is a function that takes a parameter of any type, and does different things
depending on the type:

const Writer = struct {
pub fn printvValue(self: *Writer, value: anytype) !void {
switch (@typeInfo (QTypeOf (value))) {
.Int => {
return self.writelnt (value);
by
.Float => {
return self.writeFloat (value);
by
.Pointer => {
return self.write(value);
by
else => {

@compileError ("Unable to print type '" ++
@typeName (@TypeOf (value)) ++ "'");
I

}
}
fn write(self: *Writer, value: []const u8) !void {

_ = self;

= value;

}

fn writelInt(self: *Writer, value: anytype) !void {
_ = self;
_ = value;

}

fn writeFloat (self: *Writer, value: anytype) !void {
_ = self;
_ = value;

bi
poc_printValue fn.zig

And now, what happens if we give too many arguments to print?

const print = Qimport ("std") .debug.print;

const a number: i32 = 1234;
const a string = "foobar";

test "print too many arguments" {
print ("here is a string: '{s}' here is a number: {}\n", .{
a string,
a_number,
a_number,
1)
}

test_print_too_many args.zig
$ zig test test print too many args.zig
/home/ci/actions-runner/_ work/zig-

bootstrap/out/host/lib/zig/std/fmt.z1g:202:18: error: unused
argument in 'here is a string: '{s}' here is a number: {}

1 => @compileError ("unused argument in '" ++ fmt

Zig gives programmers the tools needed to protect themselves against their own mistakes.

Zig doesn't care whether the format argument is a string literal, only that it is a compile-
time known value that can be coerced to a []const u8:

const print = @import ("std").debug.print;

const a number: i32 = 1234;
const a string = "foobar";
const fmt = "here is a string: '{s}' here is a number: {}\n";

pub fn main() void {
print (fmt, .{a string, a number});

}

print_comptime-known_format.zig

$ zig build-exe print comptime-known format.zig
$./print comptime-known format

here is a string: 'foobar' here is a number: 1234

Shell
This works fine.

Zig does not special case string formatting in the compiler and instead exposes enough
power to accomplish this task in userland. It does so without introducing another language
on top of Zig, such as a macro language or a preprocessor language. It's Zig all the way
down.

See also:

e inline while
e inline for

Assembly §

For some use cases, it may be necessary to directly control the machine code generated by
Zig programs, rather than relying on Zig's code generation. For these cases, one can use
inline assembly. Here is an example of implementing Hello, World on x86_64 Linux using
inline assembly:

pub

msg.

pub
pub

pub

pub

pub
usiz

}

fn main() noreturn {

const msg = "hello world\n";

= syscall3(SYS write, STDOUT FILENO, @intFromPtr (msg),
len);

= syscalll(SYS exit, 0);

unreachable;

const SYS write = 1;
const SYS exit = 60;

const STDOUT_FILENO = 1;

fn syscalll (number: usize, argl: usize) usize {
return asm volatile ("syscall"

[ret] "={rax}" (-> usize),

[number] "{rax}" (number),

[argl] "{rdi}" (argl),

"rcx", "rll"

)i

fn syscall3(number: usize, argl: usize, arg2: usize, arg3:
e) usize {
return asm volatile ("syscall"
: [ret] "={rax}" (-> usize),

[number] "{rax}" (number),

[argl] "{rdi}" (argl),

[arg2] "{rsi}" (arg2),

[arg3] "{rdx}" (arg3),

"rcx", "rll"

)i

inline_assembly.zig

$ zi
$./
hell

Shell

g build-exe inline assembly.zig -target x86_ 64-linux
inline assembly
o world

Dissecting the syntax:

pub

asse

valu

will

the

in

it,

fn syscalll (number: usize, argl: usize) usize {

// Inline assembly is an expression which returns a value.
// the “asm’ keyword begins the expression.

return asm

// “volatile® is an optional modifier that tells Zig this
// inline assembly expression has side-effects. Without
// “volatile', Zig is allowed to delete the inline

mbly

// code if the result is unused.

volatile (

// Next is a comptime string which is the assembly code.
// Inside this string one may use '$%[ret]’, “%[number]’,
// or “%[argl]’ where a register is expected, to specify
// the register that Zig uses for the argument or return
e,

// 1if the register constraint strings are used. However in
// the below code, this is not used. A literal % can be
// obtained by escaping it with a double percent: %%

// Often multiline string syntax comes in handy here.
\\syscall

// Next is the output. It is possible in the future Zig

// support multiple outputs, depending on how

// https://github.com/ziglang/zig/issues/215 is resolved.

// It is allowed for there to be no outputs, in which case
// this colon would be directly followed by the colon for

inputs.

// This specifies the name to be used in “%[ret]’ syntax
// the above assembly string. This example does not use
// but the syntax is mandatory.

[ret]
// Next is the output constraint string. This feature is

still

// considered unstable in Zig, and so LLVM/GCC
documentation

// must be used to understand the semantics.

!/
http://releases.llvm.org/10.0.0/docs/LangRef.html#inline-asm-
constraint-string

// https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

// In this example, the constraint string means "the
result value of

// this inline assembly instruction is whatever is in

Srax".
"={rax}"
// Next is either a value binding, or '->' and then a
type. The
// type is the result type of the inline assembly
expression.
// If it is a value binding, then ‘%[ret]’ syntax would be
used
// to refer to the register bound to the value.
(-> usize),

// Next is the list of inputs.

// The constraint for these inputs means, "when the
assembly code is

// executed, S$rax shall have the value of ‘number’ and
$rdi shall have

// the value of ‘argl'". Any number of input parameters is
allowed,
// including none.
[number] "{rax}" (number),

largl] "{rdi}" (argl),

// Next is the list of clobbers. These declare a set of
registers whose

// values will not be preserved by the execution of this
assembly code.

// These do not include output or input registers. The
special clobber

// value of "memory" means that the assembly writes to
arbitrary undeclared

// memory locations - not only the memory pointed to by a
declared indirect

// output. In this example we list $rcx and $rll because
it is known the

// kernel syscall does not preserve these registers.

"rcx", "rll"

)i

}

Assembly Syntax Explained.zig

For x86 and x86 64 targets, the syntax is AT&T syntax, rather than the more popular Intel
syntax. This is due to technical constraints; assembly parsing is provided by LLVM and its
support for Intel syntax is buggy and not well tested.

Some day Zig may have its own assembler. This would allow it to integrate more
seamlessly into the language, as well as be compatible with the popular NASM syntax. This
documentation section will be updated before 1.0.0 is released, with a conclusive statement
about the status of AT&T vs Intel/NASM syntax.

Output Constraints §

Output constraints are still considered to be unstable in Zig, and so LLVM documentation
and GCC documentation must be used to understand the semantics.

Note that some breaking changes to output constraints are planned with issue #215.

Input Constraints §

Input constraints are still considered to be unstable in Zig, and so LLVM documentation
and GCC documentation must be used to understand the semantics.

Note that some breaking changes to input constraints are planned with issue #215.

http://releases.llvm.org/10.0.0/docs/LangRef.html#inline-asm-constraint-string
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://github.com/ziglang/zig/issues/215
http://releases.llvm.org/10.0.0/docs/LangRef.html#inline-asm-constraint-string
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://github.com/ziglang/zig/issues/215

Clobbers §

Clobbers are the set of registers whose values will not be preserved by the execution of the
assembly code. These do not include output or input registers. The special clobber value of
"memory" means that the assembly causes writes to arbitrary undeclared memory locations
- not only the memory pointed to by a declared indirect output.

Failure to declare the full set of clobbers for a given inline assembly expression is
unchecked Undefined Behavior.

Global Assembly §

When an assembly expression occurs in a container level comptime block, this is global
assembly.

This kind of assembly has different rules than inline assembly. First, volatile is not valid
because all global assembly is unconditionally included. Second, there are no inputs,
outputs, or clobbers. All global assembly is concatenated verbatim into one long string and
assembled together. There are no template substitution rules regarding ¢ as there are in
inline assembly expressions.

const std = @import ("std");
const expect = std.testing.expect;

comptime {
asm (
\\.global my func;
\\.type my func, @function;

\\my_func:
\\ lea (%rdi,%rsi, 1), %eax
\\ retg

)i
}

extern fn my func(a: 132, b: 132) 1i32;
test "global assembly" {
try expect (my_func(l2, 34) == 46);
}
test_global assembly.zig
S zig test test global assembly.zig -target x86_ 64-linux
1/1 test.global assembly... OK
All 1 tests passed.

Shell

Atomics §

TODO: @fence()
TODO: @atomic rmw

TODO: builtin atomic memory ordering enum

Async Functions §
Async functions are being temporarily regressed and will be restored before Zig 0.11.0 is

tagged. I apologize for the instability. Please use Zig 0.10.0 with the -fstagel flag for now
if you need this feature.

Builtin Functions §

Builtin functions are provided by the compiler and are prefixed with @. The comptime
keyword on a parameter means that the parameter must be known at compile time.

https://github.com/ziglang/zig/issues/6025

addrSpaceCast §

QaddrSpaceCast (ptr: anytype) anytype

Converts a pointer from one address space to another. The new address space is inferred
based on the result type. Depending on the current target and address spaces, this cast may
be a no-op, a complex operation, or illegal. If the cast is legal, then the resulting pointer
points to the same memory location as the pointer operand. It is always valid to cast a
pointer between the same address spaces.

@addWithOverflow §

QaddWwithOverflow(a: anytype, b: anytype) struct { QTypeOf(a, b), ul }

Performs a + b and returns a tuple with the result and a possible overflow bit.

@alignCast §

@alignCast (ptr: anytype) anytype

ptr can be *T, 2*T, or []T. Changes the alignment of a pointer. The alignment to use is
inferred based on the result type.

A pointer alignment safety check is added to the generated code to make sure the pointer is
aligned as promised.

@alignOf §

@alignOf (comptime T: type) comptime int

This function returns the number of bytes that this type should be aligned to for the current
target to match the C ABL. When the child type of a pointer has this alignment, the
alignment can be omitted from the type.
const assert = @import ("std").debug.assert;
comptime {

assert (*u32 == *align(@alignOf (u32)) u32);
}

The result is a target-specific compile time constant. It is guaranteed to be less than or

equal to @sizeOf(T).

See also:

e Alignment

@as §
Qas (comptime T: type, expression) T

Performs Type Coercion. This cast is allowed when the conversion is unambiguous and
safe, and is the preferred way to convert between types, whenever possible.

@atomicLoad §

QatomicLoad (comptime T: type, ptr: *const T, comptime ordering:
builtin.AtomicOrder) T

This builtin function atomically dereferences a pointer and returns the value.
T must be a pointer, a bool, a float, an integer or an enum.

See also:

e (watomicStore

® (@atomicRmw

o (@fence

e (@cmpxchgWeak
e (@cmpxchgStrong

@atomicRmw §

@atomicRmw (comptime T: type, ptr: *T, comptime op: builtin.AtomicRmwOp,
operand: T, comptime ordering: builtin.AtomicOrder) T

This builtin function atomically modifies memory and then returns the previous value.
T must be a pointer, a bool, a float, an integer or an enum.
Supported operations:

.Xchg - stores the operand unmodified. Supports enums, integers and floats.

.Add - for integers, twos complement wraparound addition. Also supports Floats.
.Sub - for integers, twos complement wraparound subtraction. Also supports Floats.
.And - bitwise and

.Nand - bitwise nand

.Or - bitwise or

.Xor - bitwise xor

.Max - stores the operand if it is larger. Supports integers and floats.

.Min - stores the operand if it is smaller. Supports integers and floats.

See also:

(@atomic Store
(@atomicLoad
(@fence
@cmpxchgWeak
(@cmpxchgStrong

(@atomicStore §

QatomicStore (comptime T: type, ptr: *T, value: T, comptime ordering:
builtin.AtomicOrder) void

This builtin function atomically stores a value.
T must be a pointer, a bool, a float, an integer or an enum.

See also:

(@atomicLoad
atomicRmw
(@fence
@cmpxchgWeak
(@cmpxchgStrong

@bitCast §

@bitCast (value: anytype) anytype

Converts a value of one type to another type. The return type is the inferred result type.

Asserts that @sizeOf (@TypeOf (value)) == @sizeOf (DestType).
Asserts that @typeInfo (DestType) != .Pointer. Use @ptrCast Or @ptrFromInt if you
need this.

Can be used for these things for example:

e Convert £32 to u32 bits
e Convert 132 to u32 preserving twos complement

Works at compile-time if value is known at compile time. It's a compile error to bitcast a
value of undefined layout; this means that, besides the restriction from types which

possess dedicated casting builtins (enums, pointers, error sets), bare structs, error unions,
slices, optionals, and any other type without a well-defined memory layout, also cannot be
used in this operation.

bitOffsetOf §

@bitOffsetOf (comptime T: type, comptime field name: []const u8
comptime int

Returns the bit offset of a field relative to its containing struct.

For non packed structs, this will always be divisible by 8. For packed structs, non-byte-
aligned fields will share a byte offset, but they will have different bit offsets.

See also:

o (@offsetOf

bitSizeOf §
@bitsizeOf (comptime T: type) comptime int

This function returns the number of bits it takes to store T in memory if the type were a
field in a packed struct/union. The result is a target-specific compile time constant.

This function measures the size at runtime. For types that are disallowed at runtime, such
as comptime int and type, the result is 0.

See also:

o (@sizeOf
e (@typelnfo

@breakpoint §

@breakpoint () void

This function inserts a platform-specific debug trap instruction which causes debuggers to
break there. Unlike for etrap (), execution may continue after this point if the program is
resumed.

This function is only valid within function scope.
See also:

(] tray

@mulAdd §

@mulAdd (comptime T: type, a: T, b: T, c: T) T

Fused multiply-add, similar to (a * b) + c, except only rounds once, and is thus more
accurate.

Supports Floats and Vectors of floats.

(@byteSwap §

@byteSwap (operand: anytype) T

@TypeOf (operand) must be an integer type or an integer vector type with bit count evenly
divisible by 8.

operand may be an integer or vector.

Swaps the byte order of the integer. This converts a big endian integer to a little endian
integer, and converts a little endian integer to a big endian integer.

Note that for the purposes of memory layout with respect to endianness, the integer type
should be related to the number of bytes reported by @sizeOf bytes. This is demonstrated
with u24. @sizeOf (u24) == 4, which means that a u24 stored in memory takes 4 bytes,
and those 4 bytes are what are swapped on a little vs big endian system. On the other hand,
if T is specified to be u24, then only 3 bytes are reversed.

@bitReverse §

@bitReverse (integer: anytype) T
@TypeOf (anytype) accepts any integer type or integer vector type.
Reverses the bitpattern of an integer value, including the sign bit if applicable.

For example 0b10110110 (u8 = 182, i8 = -74) becomes 0b01101101 (u8 = 109, i8 =
109).

@offsetOf §

@offsetOf (comptime T: type, comptime field name: []Jconst u8) comptime int
Returns the byte offset of a field relative to its containing struct.

See also:

o (@bitOffsetOf

@call §

@call (modifier: std.builtin.CallModifier, function: anytype, args:
anytype) anytype

Calls a function, in the same way that invoking an expression with parentheses does:
const expect = @import ("std").testing.expect;
test "noinline function call" {

try expect(@call(.auto, add, .{3, 9}) == 12);
}
fn add(a: i32, b: i132) i32 {
return a + b;
}
test_call builtin.zig
$ zig test test call builtin.zig
1/1 test.noinline function call... OK

All 1 tests passed.

Shell

@call allows more flexibility than normal function call syntax does. The callModifier
enum is reproduced here:

pub const CallModifier = enum {
/// Equivalent to function call syntax.
auto,

/// Equivalent to async keyword used with function call
syntax.
async_kw,

/// Prevents tail call optimization. This guarantees that
the return

/// address will point to the callsite, as opposed to the
callsite's

/// callsite. If the call is otherwise required to be
tail-called

/// or inlined, a compile error is emitted instead.

never_ tail,

/// Guarantees that the call will not be inlined. If the
call is

/// otherwise required to be inlined, a compile error is
emitted instead.

never_inline,

/// Asserts that the function call will not suspend. This
allows a

/// non-async function to call an async function.

no_async,

/// Guarantees that the call will be generated with tail
call optimization.

/// If this is not possible, a compile error is emitted
instead.

always_tail,

/// Guarantees that the call will inlined at the callsite.

/// If this is not possible, a compile error is emitted
instead.

always_inline,

/// Evaluates the call at compile-time. If the call cannot
be completed at

/// compile-time, a compile error is emitted instead.

compile time,
bi

builtin. CallModifier struct.zig

@cDefine §

QcDefine (comptime name: []Jconst u8, value) void

This function can only occur inside @cImport.

This appends #define $name $value to the @cImport temporary buffer.
To define without a value, like this:

#define _GNU_SOURCE

Use the void value, like this:

@cDefine (" GNU SOURCE", {})

See also:

e Import from C Header File
e (@clnclude

e (@clmport

e (@cUndef

[]

void

@cImport §

@cImport (expression) type

This function parses C code and imports the functions, types, variables, and compatible
macro definitions into a new empty struct type, and then returns that type.

expression is interpreted at compile time. The builtin functions @cInclude, @cDefine,
and @cundef work within this expression, appending to a temporary buffer which is then
parsed as C code.

Usually you should only have one ecImport in your entire application, because it saves the
compiler from invoking clang multiple times, and prevents inline functions from being
duplicated.

Reasons for having multiple GcImport expressions would be:

e To avoid a symbol collision, for example if foo.h and bar.h both #define
CONNECTION COUNT
e To analyze the C code with different preprocessor defines

See also:

Import from C Header File

[]
e (wclnclude
[]
[]

@cDefine
(@cUndef

@clInclude §

@cInclude (comptime path: []Jconst u8) wvoid
This function can only occur inside @cImport.
This appends #include <$path>\n to the ¢ import temporary buffer.

See also:

Import from C Header File
@clmport
@cDefine
(@cUndef

clz§
@clz (operand: anytype) anytype

@TypeOf (operand) must be an integer type or an integer vector type.

operand may be an integer or vector.

Counts the number of most-significant (leading in a big-endian sense) zeroes in an integer -
"count leading zeroes".

If operand is a comptime-known integer, the return type is comptime int. Otherwise, the
return type is an unsigned integer or vector of unsigned integers with the minimum number
of bits that can represent the bit count of the integer type.

If operand is zero, @clz returns the bit width of integer type T.

See also:

° (@ctz
e (@popCount

@cmpxchgStrong §

@cmpxchgStrong (comptime T: type, ptr: *T, expected value: T, new value:
T, success_order: AtomicOrder, fail order: AtomicOrder) ?T

This function performs a strong atomic compare exchange operation. It's the equivalent of

this code, except atomic:

fn cmpxchgStrongButNotAtomic (comptime T: type, ptr: *T,
expected value: T, new_value: T) ?T {
const old value = ptr.*;

if (old value == expected value) {
ptr.* = new_value;
return null;

} else {

return old value;
}
}

not atomic_cmpxchgStrong.zig

If you are using cmpxchg in a loop, @cmpxchgWeak is the better choice, because it can
be implemented more efficiently in machine instructions.

T must be a pointer, a bool, a float, an integer or an enum.
@typeInfo (RTypeOf (ptr)) .Pointer.alignment must be >= @sizeOf (T) .

See also:

(@atomic Store
(@atomicLoad

atomicRmw

@fence

cmpxchgWeak

@cmpxchgWeak §

@cmpxchgWeak (comptime T: type, ptr: *T, expected value: T, new _value: T,
success_order: AtomicOrder, fail order: AtomicOrder) 2T

This function performs a weak atomic compare exchange operation. It's the equivalent of
this code, except atomic:

fn cmpxchgWeakButNotAtomic (comptime T: type, ptr: *T,
expected value: T, new_value: T) 2T {
const old value = ptr.*;

if (old value == expected value and
usuallyTrueButSometimesFalse ()) {
ptr.* = new_value;
return null;
} else {

return old value;
}
}

cmpxchgWeakButNotAtomic

If you are using cmpxchg in a loop, the sporadic failure will be no problem, and
cmpxchgWeak is the better choice, because it can be implemented more efficiently in
machine instructions. However if you need a stronger guarantee, use @cmpxchgStrong.

T must be a pointer, a bool, a float, an integer or an enum.
@typeInfo(@TypeOf(ptr)).Pointer.alignmentlnustbe >= @sizeOf (T).

See also:

(@atomicStore

[]

° atomicLoad

e (@atomicRmw

e (@fence

* @cmpxchgStrong

@compileError §

QcompileError (comptime msg: []const u8) noreturn

This function, when semantically analyzed, causes a compile error with the message msg.

There are several ways that code avoids being semantically checked, such as using if or
switch with compile time constants, and comptime functions.

@compilelog §

Qcompilelog(args: ...) void
This function prints the arguments passed to it at compile-time.

To prevent accidentally leaving compile log statements in a codebase, a compilation error is
added to the build, pointing to the compile log statement. This error prevents code from
being generated, but does not otherwise interfere with analysis.

This function can be used to do "printf debugging" on compile-time executing code.
const print = @import ("std").debug.print;

const numl = blk: {
var vall: i32 = 99;
Qcompilelog ("comptime vall = ", wvall);
vall = vall + 1;
break :blk vall;
}i

test "main" {
Qcompilelog ("comptime in main");

print ("Runtime in main, numl = {}.\n", .{numl});

}
test_compileLog_builtin.zig

$ zig test test compileLog builtin.zig
docgen tmp/test compileLog builtin.zig:11:5: error: found
compile log statement
@QcompileLog ("comptime in main");
docgen tmp/test compileLog builtin.zig:5:5: note: also here
@QcompileLog ("comptime vall = ", wvall);

Compile Log Output:
Qas (*const [16:0]u8, "comptime in main")
Qas (*const [16:0]u8, "comptime vall = "), @as(i32, 99

Shell

If all @compileLog calls are removed or not encountered by analysis, the program compiles
successfully and the generated executable prints:

const print = Qimport ("std") .debug.print;

const numl = blk: {
var vall: i32 = 99;
vall = vall + 1;
break :blk vall;

}i

test "main" {
print ("Runtime in main, numl = {}.\n", .{numl});

}

test_without_compileLog_builtin.zig

S zig test test_without compileLog builtin.zig
1/1 test.main... Runtime in main, numl = 100.
OK

All 1 tests passed.

Shell

@constCast §

QconstCast (value: anytype) DestType

Remove const qualifier from a pointer.

ctz§
Qctz (operand: anytype) anytype
@TypeOf (operand) must be an integer type or an integer vector type.

operand may be an integer or vector.

Counts the number of least-significant (trailing in a big-endian sense) zeroes in an integer -
"count trailing zeroes".

If operand is a comptime-known integer, the return type is comptime int. Otherwise, the
return type is an unsigned integer or vector of unsigned integers with the minimum number
of bits that can represent the bit count of the integer type.

If operand is zero, @ctz returns the bit width of integer type T.

See also:

* (aclz
e (@popCount

@cUndef §

@QcUndef (comptime name: []const u8) void
This function can only occur inside @cImport.
This appends #undef $name to the @cImport temporary buffer.

See also:

Import from C Header File
@clmport
(@cDefine
@clnclude

@cVaArg §

@cVaArg (operand: *std.builtin.Valist, comptime T: type) T

Implements the C macro va_arg.

See also:
o (@cVaCo
e (@cVaEnd
o cVaStart

@cVaCopy §

@QcvaCopy (src: *std.builtin.Valist) std.builtin.Valist

Implements the C macro va_copy.

See also:
¢ VaAr
° c¢VaEnd
° cVaStart

@cVaEnd §

QcvVaEnd (src: *std.builtin.Valist) void

Implements the C macro va_end.

See also:
° cVaAr
e (@cVaCo
° cVaStart

@cVaStart §

@QcvaStart () std.builtin.Valist

Implements the C macro va_start. Only valid inside a variadic function.

See also:
cVaAr
° ¢ VaCo
e (@cVaEnd

@divExact §

@divExact (numerator: T, denominator: T) T

Exact division. Caller guarantees denominator != 0 and @divTrunc (numerator,
denominator) * denominator == numerator.

® Q@divExact (6, 3) == 2

® (@divExact(a, b) * b == a

For a function that returns a possible error code, use @import ("std") .math.divExact.

See also:

e (@divTrunc
e (@divFloor

@divFloor §

Q@divFloor (numerator: T, denominator: T) T

Floored division. Rounds toward negative infinity. For unsigned integers it is the same as

numerator / denominator. Caller guarantees denominator != 0 and ! (@typeInfo (T)
== .Int and T.is_signed and numerator == std.math.minInt(T) and
denominator == -1).

® (@divFloor (-5, 3) == -2

® (@divFloor(a, b) * b) + @mod(a, b) == a

For a function that returns a possible error code, use @import ("std") .math.divFloor.

See also:

e (@divTrunc
e (wdivExact

@divTrunc §

@divTrunc (numerator: T, denominator: T) T

Truncated division. Rounds toward zero. For unsigned integers it is the same as
numerator / denominator. Caller guarantees denominator != 0 and ! (@typeInfo (T)
== .Int and T.is signed and numerator == std.math.minInt(T) and

denominator == -1).

® @divTrunc(-5, 3) == -1
® (@divTrunc(a, b) * b) + Qrem(a, b) == a

For a function that returns a possible error code, use @import ("std") .math.divTrunc.

See also:

e (@divFloor
¢ (@divExact

@embedFile §

@embedFile (comptime path: []const u8) *const [N:0]u8

This function returns a compile time constant pointer to null-terminated, fixed-size array
with length equal to the byte count of the file given by path. The contents of the array are
the contents of the file. This is equivalent to a string literal with the file contents.

path is absolute or relative to the current file, just like @import.
See also:

e (@import

(@enumFromlInt §

@enumFromInt (integer: anytype) anytype

Converts an integer into an enum value. The return type is the inferred result type.

Attempting to convert an integer which represents no value in the chosen enum type
invokes safety-checked Undefined Behavior.

See also:

e @intFromEnum

@errorFromlint §

@errorFromInt (value: std.meta.Int (.unsigned, @sizeOf (anyerror) * 8)
anyerror

Converts from the integer representation of an error into The Global Error Set type.

It is generally recommended to avoid this cast, as the integer representation of an error is
not stable across source code changes.

Attempting to convert an integer that does not correspond to any error results in safety-
protected Undefined Behavior.

See also:

e (@intFromError

@errorName §

@errorName (err: anyerror) [:0]const u8

This function returns the string representation of an error. The string representation of
error.OutOfMem i "OutOfMem".

If there are no calls to GerrorName in an entire application, or all calls have a compile-time
known value for err, then no error name table will be generated.

@errorReturnTrace §

Q@errorReturnTrace () ?*builtin.StackTrace

If the binary is built with error return tracing, and this function is invoked in a function that
calls a function with an error or error union return type, returns a stack trace object.
Otherwise returns null.

@errSetCast §

QerrSetCast (value: anytype) anytype

Converts an error value from one error set to another error set. The return type is the
inferred result type. Attempting to convert an error which is not in the destination error set
results in safety-protected Undefined Behavior.

(@export §

Q@export (declaration, comptime options: std.builtin.ExportOptions) void
Creates a symbol in the output object file.
declaration must be one of two things:

e An identifier (x) identifying a function or a variable.
e Field access (x.y) looking up a function or a variable.

This builtin can be called from a comptime block to conditionally export symbols. When
declaration is a function with the C calling convention and options.linkage is Strong,
this is equivalent to the export keyword used on a function:

comptime {
@export (internalName, .{ .name = "foo", .linkage = .Strong
})i
}
fn internalName () callconv(.C) void {}
export_builtin.zig
$ zig build-obj export builtin.zig
Shell
This is equivalent to:
export fn foo () void {}
export_builtin_equivalent_code.zig
S zig build-obj export builtin equivalent code.zig

Shell

Note that even when using export, the @"foo" syntax for identifiers can be used to
choose any string for the symbol name:

export fn @"A function name that is a complete sentence." ()
void {}

export_any symbol name.zig
$ zig build-obj export any symbol name.zig

Shell

When looking at the resulting object, you can see the symbol is used verbatim:

00000000000001£f0 T A function name that is a complete sentence.

See also:

e Exporting a C Library

@extern §

Q@extern(T: type, comptime options: std.builtin.ExternOptions) T

Creates a reference to an external symbol in the output object file. T must be a pointer
type.

See also:

° QCX[!OI‘t

@fence §

@fence (order: AtomicOrder) void
The fence function is used to introduce happens-before edges between operations.
AtomicOrder can be found with Q@import ("std") .builtin.AtomicOrder.

See also:

(@atomic Store
(@atomicLoad
atomic Rmw
(@cmpxchgWeak
(@cmpxchgStrong

@field §

@field(lhs: anytype, comptime field name: []Jconst u8) (field)
Performs field access by a compile-time string. Works on both fields and declarations.
const std = @import ("std");
const Point = struct {
x: u32,

y: u32,

pub var z: u32 = 1;
}i

test "field access by string" {
const expect = std.testing.expect;
var p = Point{ .x =0, .y =0 };

@field(p, "x") = 4;

@field(p, "y") = @field(p, "x") + 1;
try expect(@field(p, "x") == 4);

try expect(@field(p, "y") == 5);

}

test "decl access by string" {
const expect = std.testing.expect;

try expect (@field(Point, "z") == 1);
@field (Point, "z") = 2;
try expect (@field(Point, "z") == 2);

}

test_field builtin.zig

S zig test test_ field builtin.zig

1/2 test.field access by string... OK
2/2 test.decl access by string... OK
All 2 tests passed.

Shell

fieldParentPtr §

@fieldParentPtr (comptime ParentType: type, comptime field name: []const
u8,
field ptr: *T) *ParentType

Given a pointer to a field, returns the base pointer of a struct.

@floatCast §

@floatCast (value: anytype) anytype

Convert from one float type to another. This cast is safe, but may cause the numeric value
to lose precision. The return type is the inferred result type.

@MfloatFromint §

@floatFromInt (int: anytype) anytype

Converts an integer to the closest floating point representation. The return type is the
inferred result type. To convert the other way, use @intFromFloat. This cast is always
safe.

@frameAddress §

Q@frameAddress () usize
This function returns the base pointer of the current stack frame.

The implications of this are target-specific and not consistent across all platforms. The
frame address may not be available in release mode due to aggressive optimizations.

This function is only valid within function scope.

@hasDecl §

@hasDecl (comptime Container: type, comptime name: []const u8) bool

Returns whether or not a container has a declaration matching name.

const std = @import ("std");
const expect = std.testing.expect;

const Foo = struct {
nope: i32,

pub var blah = "xxx";
const hi = 1;
bi

test "@hasDecl" {
try expect (@hasDecl (Foo, "blah"));

// Even though ‘hi' is private, @hasDecl returns true
because this test is

// in the same file scope as Foo. It would return false if
Foo was declared

// in a different file.

try expect (@hasDecl (Foo, "hi"));

// @hasDecl is for declarations; not fields.
try expect (!@hasDecl (Foo, "nope"));
try expect (!@hasDecl (Foo, "nopel234"));

}

test_hasDecl builtin.zig

$ zig test test_hasDecl_builtin.zig
1/1 test.@hasDecl... OK

All 1 tests passed.

Shell

See also:

e (@hasField

@hasField §

@hasField(comptime Container: type, comptime name: []const u8) bool
Returns whether the field name of a struct, union, or enum exists.

The result is a compile time constant.

It does not include functions, variables, or constants.

See also:

e (@hasDecl

@import §
@import (comptime path: []const u8) type

This function finds a zig file corresponding to path and adds it to the build, if it is not
already added.

Zig source files are implicitly structs, with a name equal to the file's basename with the
extension truncated. @import returns the struct type corresponding to the file.

Declarations which have the pub keyword may be referenced from a different source file
than the one they are declared in.

path can be a relative path or it can be the name of a package. If it is a relative path, it is
relative to the file that contains the @ import function call.

The following packages are always available:

@import ("std") - Zig Standard Library
@import ("builtin") - Target-specific information The command zig build-exe -
-show-builtin outputs the source to stdout for reference.

e @import ("root") - Root source file This is usually src/main.zig but depends on
what file is built.

See also:

e Compile Variables
e (@embedFile

@inComptime §

Q@inComptime () bool

Returns whether the builtin was run in a comptime context. The result is a compile-time
constant.

This can be used to provide alternative, comptime-friendly implementations of functions. It
should not be used, for instance, to exclude certain functions from being evaluated at
comptime.

See also:

e comptime

@intCast §

@intCast (int: anytype) anytype

Converts an integer to another integer while keeping the same numerical value. The return

type is the inferred result type. Attempting to convert a number which is out of range of
the destination type results in safety-protected Undefined Behavior.

test "integer cast panic" {
var a: ul6 = Oxabcd;
var b: u8 = @intCast(a);
= b;

}
test_intCast_builtin.zig

$ zig test test intCast builtin.zig
1/1 test.integer cast panic... thread 2455340 panic: integer
cast truncated bits
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/test intCast builtin.zig:3:17:
0x2241c7 in test.integer cast panic (test)

var b: u8 = @intCast(a);

/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/test_runner.zig:176:28: 0x22d3d9 in
mainTerminal (test)

} else test_fn.func();

~

/home/ci/actions-runner/_work/zig-
bootstrap/out/host/1lib/zig/test_runner.zig:36:28: 0x22522a in
main (test)

return mainTerminal () ;

~

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x224702 in
posixCallMainAndExit (test)

root.main() ;

~

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x224251 in
_start (test)

asm volatile (switch (native arch) {

?22?2:2:2: 0x0 in 22?2 (?227)

error: the following test command crashed:
/home/ci/actions-runner/ work/zig-bootstrap/out/zig-local-
cache/o/34bca970f2215feafead7412bacb3a2c/test

Shell

To truncate the significant bits of a number out of range of the destination type, use

Qtrunc ate.

If T is comptime int, then this is semantically equivalent to Type Coercion.

@intFromBool §

@intFromBool (value: bool) ul

Converts true to @as (ul, 1) and false to Gas(ul, 0).

@intFromEnum §

@intFromEnum(enum or tagged union: anytype) anytype

Converts an enumeration value into its integer tag type. When a tagged union is passed, the
tag value is used as the enumeration value.

If there is only one possible enum value, the result is a comptime int known at comptime.

See also:

¢ @enumFromlInt

@intFromError §

@intFromError (err: anytype) std.meta.Int(.unsigned, @sizeOf (anyerror) *
8)

Supports the following types:

e The Global Error Set
e Error Set Type
e Error Union Type

Converts an error to the integer representation of an error.

It is generally recommended to avoid this cast, as the integer representation of an error is
not stable across source code changes.

See also:

e (@errorFromint

@intFromFloat §

@intFromFloat (float: anytype) anytype
Converts the integer part of a floating point number to the inferred result type.

If the integer part of the floating point number cannot fit in the destination type, it invokes
safety-checked Undefined Behavior.

See also:

o @floatFromint

@intFromPtr §

@intFromPtr (value: anytype) usize
Converts value to a usize which is the address of the pointer. value can be *T or 2 *T.

To convert the other way, use @ptrFromInt

(@max §

@max(a: T, b: T) T

Returns the maximum value of a and b. This builtin accepts integers, floats, and vectors of
either. In the latter case, the operation is performed element wise.

NaNs are handled as follows: if one of the operands of a (pairwise) operation is NaN, the
other operand is returned. If both operands are NaN, NaN is returned.

See also:

e (@min

e Vectors

(@memcpy §

@memcpy (noalias dest, noalias source) void
This function copies bytes from one region of memory to another.

dest must be a mutable slice, a mutable pointer to an array, or a mutable many-item
pointer. It may have any alignment, and it may have any element type.

source must be a slice, a pointer to an array, or a many-item pointer. It may have any
alignment, and it may have any element type.

The source element type must support Type Coercion into the dest element type. The
element types may have different ABI size, however, that may incur a performance penalty.

Similar to for loops, at least one of source and dest must provide a length, and if two
lengths are provided, they must be equal.

Finally, the two memory regions must not overlap.

(@memset §

@memset (dest, elem) void
This function sets all the elements of a memory region to elem.

dest must be a mutable slice or a mutable pointer to an array. It may have any alignment,
and it may have any element type.

elem is coerced to the element type of dest.

For securely zeroing out sensitive contents from memory, you should use
std.crypto.utils.secureZero

(@min §
@min(a: T, b: T) T

Returns the minimum value of a and b. This builtin accepts integers, floats, and vectors of
either. In the latter case, the operation is performed element wise.

NaNs are handled as follows: if one of the operands of a (pairwise) operation is NaN, the
other operand is returned. If both operands are NaN, NaN is returned.

See also:

L4 @max

e Mectors

@wasmMemorySize §

@wasmMemorySize (index: u32) u32

This function returns the size of the Wasm memory identified by index as an unsigned
value in units of Wasm pages. Note that each Wasm page is 64KB in size.

This function is a low level intrinsic with no safety mechanisms usually useful for allocator
designers targeting Wasm. So unless you are writing a new allocator from scratch, you
should use something like @ import ("std") .heap.WasmPageAllocator.

See also:

e (@wasmMemoryGrow

@wasmMemoryGrow §

QwasmMemoryGrow (index: u32, delta: u32) 132

This function increases the size of the Wasm memory identified by index by delta in
units of unsigned number of Wasm pages. Note that each Wasm page is 64KB in size. On
success, returns previous memory size; on failure, if the allocation fails, returns -1.

This function is a low level intrinsic with no safety mechanisms usually useful for allocator
designers targeting Wasm. So unless you are writing a new allocator from scratch, you
should use something like @import ("std") .heap.WasmPageAllocator

const std = @import ("std");
const native arch = @import ("builtin").target.cpu.arch;
const expect = std.testing.expect;

test "Q@wasmMemoryGrow" {
if (native arch != .wasm32) return error.SkipZigTest;

var prev = @wasmMemorySize (0);
try expect (prev == QwasmMemoryGrow (0, 1));
try expect (prev + 1 == @wasmMemorySize (0));
}
test wasmMemoryGrow_builtin.zig
$ zig test test wasmMemoryGrow builtin.zig

1/1 test.@wasmMemoryGrow... SKIP
0 passed; 1 skipped; 0 failed.

Shell

See also:

o wasmMemorySize

@mod §

@mod (numerator: T, denominator: T) T

Modulus division. For unsigned integers this is the same as numerator % denominator.
Caller guarantees denominator > 0, otherwise the operation will result in a Remainder
Division by Zero when runtime safety checks are enabled.

® Qmod (-5, 3) ==
® (Q@QdivFloor(a, b) * b) + @mod(a, b) == a

For a function that returns an error code, see @import ("std") .math.mod.

See also:

° @rem

@mulWithOverflow §

@mulWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), ul }

Performs a * b and returns a tuple with the result and a possible overflow bit.

(@panic §
@panic (message: []const u8) noreturn

Invokes the panic handler function. By default the panic handler function calls the public
panic function exposed in the root source file, or if there is not one specified, the
std.builtin.default panic function from std/builtin.zig.

Generally it is better to use @import ("std") .debug.panic. However, @panic can be
useful for 2 scenarios:

e From library code, calling the programmer's panic function if they exposed one in the
root source file.

e When mixing C and Zig code, calling the canonical panic implementation across
multiple .o files.

See also:

e Root Source File

@popCount §

@popCount (operand: anytype) anytype
@TypeOf (operand) must be an integer type.

operand may be an integer or vector.

Counts the number of bits set in an integer - "population count".

If operand is a comptime-known integer, the return type is comptime int. Otherwise, the
return type is an unsigned integer or vector of unsigned integers with the minimum number
of bits that can represent the bit count of the integer type.

See also:

@prefetch §

@prefetch (ptr: anytype, comptime options: std.builtin.PrefetchOptions)
void

This builtin tells the compiler to emit a prefetch instruction if supported by the target CPU.
If the target CPU does not support the requested prefetch instruction, this builtin is a no-
op. This function has no effect on the behavior of the program, only on the performance
characteristics.

The ptr argument may be any pointer type and determines the memory address to
prefetch. This function does not dereference the pointer, it is perfectly legal to pass a
pointer to invalid memory to this function and no illegal behavior will result.

The options argument is the following struct:

/// This data structure is used by the Zig language code
generation and
/// therefore must be kept in sync with the compiler
implementation.
pub const PrefetchOptions = struct {

/// Whether the prefetch should prepare for a read or a

write.

rw: Rw = .read,

/// The data's locality in an inclusive range from 0 to 3.

/17

/// 0 means no temporal locality. That is, the data can be
immediately

/// dropped from the cache after it is accessed.

/17

/// 3 means high temporal locality. That is, the data
should be kept in

/// the cache as it is likely to be accessed again soon.

locality: u2 = 3,

/// The cache that the prefetch should be preformed on.

cache: Cache = .data,

pub const Rw = enum(ul) {

read,
write,

pub const Cache = enum(ul) {
instruction,
data,
}i
}i

builtin. zig

@ptrCast §

@ptrCast (value: anytype) anytype

Converts a pointer of one type to a pointer of another type. The return type is the inferred

result type.

Optional Pointers are allowed. Casting an optional pointer which is null to a non-optional
pointer invokes safety-checked Undefined Behavior.

@ptrCast cannot be used for:

Removing const qualifier, use @constCast.

Removing volatile qualifier, use @volatileCast.

Changing pointer address space, use @addrSpaceCast.

Increasing pointer alignment, use @alignCast.

Casting a non-slice pointer to a slice, use slicing syntax ptr[start..end].

@ptrFromInt §

@ptrFromInt (address: usize) anytype

Converts an integer to a pointer. The return type is the inferred result type. To convert the
other way, use @intFromPtr. Casting an address of 0 to a destination type which in not
optional and does not have the allowzero attribute will result in a Pointer Cast Invalid Null
panic when runtime safety checks are enabled.

If the destination pointer type does not allow address zero and address is zero, this
invokes safety-checked Undefined Behavior.

@rem §

@rem (numerator: T, denominator: T) T

Remainder division. For unsigned integers this is the same as numerator % denominator.
Caller guarantees denominator > 0, otherwise the operation will result in a Remainder
Division by Zero when runtime safety checks are enabled.

® Qrem(-5, 3) == -2
® (@divTrunc(a, b) * b) + @rem(a, b) == a

For a function that returns an error code, see @import ("std") .math.rem.
See also:

e (@mod

@returnAddress §

@returnAddress () usize

This function returns the address of the next machine code instruction that will be
executed when the current function returns.

The implications of this are target-specific and not consistent across all platforms.

This function is only valid within function scope. If the function gets inlined into a calling
function, the returned address will apply to the calling function.

@select §

@select (comptime T: type, pred: @Vector(len, bool), a: @Vector(len, T), b:
@Vector (len, T)) @Vector (len, T)

Selects values element-wise from a or b based on pred. If pred[i] is true, the
corresponding element in the result will be a[i] and otherwise b[i].

See also:

e Vectors

@setAlignStack §

@setAlignStack (comptime alignment: u29) void

Ensures that a function will have a stack alignment of at least alignment bytes.

@setCold §

@setCold(comptime is cold: bool) void

Tells the optimizer that a function is rarely called.

@setEvalBranchQuota §

@setEvalBranchQuota (comptime new quota: u32) void

Changes the maximum number of backwards branches that compile-time code execution
can use before giving up and making a compile error.

If the new quota is smaller than the default quota (1000) or a previously explicitly set
quota, it is ignored.

Example:
test "foo" {
comptime {

var 1 = 0;

while (i < 1001) : (i += 1) {}
}
test_without_setEvalBranchQuota_builtin.zig
$ zig test test without setEvalBranchQuota builtin.zig
docgen tmp/test without setEvalBranchQuota builtin.zig:4:9:
error: evaluation exceeded 1000 backwards branches

while (i < 1001) : (1 += 1) {}

docgen tmp/test without setEvalBranchQuota builtin.zig:4:9:
note: use @setEvalBranchQuota() to raise the branch limit from
1000

Shell

Now we use @setEvalBranchQuota:
test "foo" {
comptime {
@setEvalBranchQuota (1001) ;
var 1 = 0;
while (i < 1001) : (1 += 1) {}
}
test_setEvalBranchQuota_builtin.zig
$ zig test test setEvalBranchQuota builtin.zig
1/1 test.foo... OK
All 1 tests passed.

Shell

See also:
e comptime

@setFloatMode §

@setFloatMode (comptime mode: Qimport ("std").builtin.FloatMode) void

Sets the floating point mode of the current scope. Possible values are:

pub const FloatMode = enum {
Strict,
Optimized,

}i

FloatMode.zig

e strict (default) - Floating point operations follow strict IEEE compliance.
e Optimized - Floating point operations may do all of the following:
o Assume the arguments and result are not NaN. Optimizations are required to retain
defined behavior over NaNs, but the value of the result is undefined.
o Assume the arguments and result are not +/-Inf. Optimizations are required to
retain defined behavior over +/-Inf, but the value of the result is undefined.
Treat the sign of a zero argument or result as insignificant.
Use the reciprocal of an argument rather than perform division.
Perform floating-point contraction (e.g. fusing a multiply followed by an addition
into a fused multiply-add).
o Perform algebraically equivalent transformations that may change results in
floating point (e.g. reassociate).
This is equivalent to -ffast-math in GCC.

The floating point mode is inherited by child scopes, and can be overridden in any scope.
You can set the floating point mode in a struct or module scope by using a comptime
block.

See also:

o Floating Point Operations

setRuntimeSafety §

@setRuntimeSafety (comptime safety on: bool) void

Sets whether runtime safety checks are enabled for the scope that contains the function
call.

test "@setRuntimeSafety" {
// The builtin applies to the scope that it is called in.
So here, integer overflow
// will not be caught in ReleaseFast and ReleaseSmall
modes:
// var x: u8 = 255;
// x += 1; // undefined behavior in
ReleaseFast/ReleaseSmall modes.
{
// However this block has safety enabled, so safety
checks happen here,
// even in ReleaseFast and ReleaseSmall modes.
@setRuntimeSafety (true) ;
var x: u8 = 255;
x +=1;

{

// The value can be overridden at any scope. So
here integer overflow

// would not be caught in any build mode.

@setRuntimeSafety (false);

// var x: u8 = 255;

// x += 1; // undefined behavior in all build
modes.

}

test_setRuntimeSafety_builtin.zig

$ zig test test setRuntimeSafety builtin.zig -OReleaseFast
1/1 test.@setRuntimeSafety... thread 2455486 panic: integer
overflow
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test setRuntimeSafety builtin.zig:11:
0x20bd6l in test.@setRuntimeSafety (test)

x +=1;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x20cbfb in
main (test)

} else test fn.func();
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x20be54 in
posixCallMainAndExit (test)

root.main () ;
/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x20bd81 in
_start (test)
asm volatile (switch (native_arch) ({

?2?2:2:2: 0x0 in 22?2 (?227)
error: the following test command crashed:
/home/ci/actions-runner/_ work/zig-bootstrap/out/zig-local-

cache/0/03blal0fe075355702464d1e69bflfad/test

4 D]
Shell

Note: it is planned to replace @setRuntimeSafety with GoptimizeFor

@shlExact §

@shlExact (value: T, shift amt: Log2T) T

Performs the left shift operation (<<). For unsigned integers, the result is undefined if any
1 bits are shifted out. For signed integers, the result is undefined if any bits that disagree
with the resultant sign bit are shifted out.

The type of shift amt is an unsigned integer with 1og2 (@typeInfo(T).Int.bits) bits.
This is because shift amt >= @typeInfo(T).Int.bits is undefined behavior.

See also:

e (@shrExact
o (@shlWithOverflow

@shlWithOverflow §

@shlWithOverflow(a: anytype, shift amt: Log2T) struct { QTypeOf(a), ul }
Performs a << b and returns a tuple with the result and a possible overflow bit.

The type of shift amt is an unsigned integer with
logZ(@typeInfo(@TypeOf(a)).Int.bits)bﬁS.ThE is becauseshiftiamt >=
@typeInfo (@TypeOf (a)) .Int.bits is undefined behavior.

See also:

e (@wshlExact
e (@wshrExact

@shrExact §

@shrExact (value: T, shift amt: Log2T) T

Performs the right shift operation (>>). Caller guarantees that the shift will not shift any 1
bits out.

https://github.com/ziglang/zig/issues/978

The type of shift amt is an unsigned integer with 1og2 (@typeInfo(T).Int.bits) bits.
This is because shift amt >= @typeInfo(T).Int.bits is undefined behavior.

See also:

e (@shlExact
e (@shlWithOverflow

@shuffle §

@shuffle (comptime E: type, a: @Vector(a len, E), b: @Vector(b len, E),
comptime mask: @Vector (mask len, i32)) @Vector (mask len, E)

Constructs a new vector by selecting elements from a and b based on mask.

Each element in mask selects an element from either a or b. Positive numbers select from a
starting at 0. Negative values select from b, starting at -1 and going down. It is
recommended to use the ~ operator for indexes from b so that both indexes can start from
0 (i.e. ~@as(i32, 0) is -1).

For each element of mask, if it or the selected value from a or b is undefined, then the
resulting element is undefined.

a_lenand b_len may differ in length. Out-of-bounds element indexes in mask result in
compile errors.

If a or b is undefined, it is equivalent to a vector of all undefined with the same length as
the other vector. If both vectors are undefined, @shuffle returns a vector with all
elements undefined.

E must be an integer, float, pointer, or bool. The mask may be any vector length, and its
length determines the result length.

const std = Qimport ("std");
const expect = std.testing.expect;

test "vector @shuffle" {

const a = @Vector(7, u8){ 'o', '1', 'h', 'e', 'r', 'z',
w' o };

const b = @Vector (4, u8){ 'w', 'd', '"!', 'x' };

// To shuffle within a single vector, pass undefined as
the second argument.

// Notice that we can re-order, duplicate, or omit
elements of the input vector

const maskl = @Vector(5, i32){ 2, 3, 1, 1, 0 };

const resl: @Vector (5, u8) = @shuffle(u8, a, undefined,
maskl) ;

try expect(std.mem.eqgl (u8, &@as([5]u8, resl), "hello"));

// Combining two vectors
const mask2 = @Vector(6, i32){ -1, 0, 4, 1, -2, -3 };
const res2: @Vector (6, u8) = @shuffle(u8, a, b, mask2);
try expect (std.mem.eql (u8, &Cas([6]u8, res2), "world!")):;
}
test_shuffle builtin.zig
S zig test test shuffle builtin.zig
1/1 test.vector @shuffle... OK
All 1 tests passed.

Shell
See also:

e Vectors

sizeOf §

@sizeOf (comptime T: type) comptime int

This function returns the number of bytes it takes to store T in memory. The result is a
target-specific compile time constant.

This size may contain padding bytes. If there were two consecutive T in memory, this
would be the offset in bytes between element at index 0 and the element at index 1. For
integer, consider whether you want to use @sizeOf (T) or @typeInfo (T).Int.bits.

This function measures the size at runtime. For types that are disallowed at runtime, such
as comptime int and type, the result is 0.

See also:

o (@bitSizeOf
e (@typelnfo

@splat §

@splat (scalar: anytype) anytype

Produces a vector where each element is the value scalar. The return type and thus the
length of the vector is inferred.

const std = @import ("std");
const expect = std.testing.expect;

test "vector @splat" {
const scalar: u32 = 5;
const result: @Vector (4, u32) = @splat(scalar);
try expect (std.mem.eqgl (u32, &Qas([4]u32, result), &[_ Ju32{
5,5, 5 5 1))
}
test_splat_builtin.zig
$ zig test test splat builtin.zig
1/1 test.vector @splat... OK
All 1 tests passed.

Shell
scalar must be an integer, bool, float, or pointer.
See also:

e \ectors

e (@shuffle

@reduce §

@reduce (comptime op: std.builtin.ReduceOp, value: anytype) E

Transforms a vector into a scalar value (of type) by performing a sequential horizontal
reduction of its elements using the specified operator op.

Not every operator is available for every vector element type:

e Every operator is available for integer vectors.
e .And, .Or, .Xor are additionally available for bool vectors,
® .Min, .Max, .Add, .Mul are additionally available for floating point vectors,

Note that .Add and .Mul reductions on integral types are wrapping; when applied on
floating point types the operation associativity is preserved, unless the float mode is set to
Optimized

const std = @import ("std");
const expect = std.testing.expect;

test "vector @reduce" {
const V = @Vector (4, i32);
const value = V{1, -1, 1, -1 };
const result = value > @as(V, @splat(0));
// result is { true, false, true, false };

try comptime expect (@TypeOf (result) == @Vector (4, bool));
const is all true @reduce (.And, result);

try comptime expect (@TypeOf (is all true) == bool);

try expect(is all true == false);

}

test_reduce_builtin.zig

$ zig test test_reduce_builtin.zig
1/1 test.vector @reduce... OK

All 1 tests passed.

Shell
See also:

o Mectors

o (wsetFloatMode

@src §

@src() std.builtin.SourcelLocation

Returns a SourceLocation struct representing the function's name and location in the
source code. This must be called in a function.

const std = Qimport ("std");
const expect = std.testing.expect;

test "@src" {
try doTheTest () ;
fn doTheTest () !void {
const src = @src();
try expect(src.line == 9);
try expect(src.column == 17);
try expect (std.mem.endsWith (u8, src.fn name,
"doTheTest"));
try expect (std.mem.endsWith (u8, src.file,
"test src_builtin.zig"));
}
test_src_builtin.zig
$ zig test test src builtin.zig
1/1 test.@src... OK
All 1 tests passed.

Shell

@sqrt §

@sgrt (value: anytype) @TypeOf (value)

Performs the square root of a floating point number. Uses a dedicated hardware instruction
when available.

Supports Floats and Vectors of floats.

@sin §

@sin(value: anytype) @TypeOf (value)

Sine trigonometric function on a floating point number in radians. Uses a dedicated
hardware instruction when available.

Supports Floats and Vectors of floats.

@cos §

@Qcos (value: anytype) @TypeOf (value)

Cosine trigonometric function on a floating point number in radians. Uses a dedicated
hardware instruction when available.

Supports Floats and Vectors of floats.

@tan §
@tan (value: anytype) @TypeOf (value)

Tangent trigonometric function on a floating point number in radians. Uses a dedicated
hardware instruction when available.

Supports Floats and Vectors of floats.

(@exp §
Qexp (value: anytype) @TypeOf (value)

Base-e exponential function on a floating point number. Uses a dedicated hardware
instruction when available.

Supports Floats and Vectors of floats.

@exp2 §

Qexp2 (value: anytype) QTypeOf (value)

Base-2 exponential function on a floating point number. Uses a dedicated hardware
instruction when available.

Supports Floats and Vectors of floats.

@log §
@log(value: anytype) @TypeOf (value)

Returns the natural logarithm of a floating point number. Uses a dedicated hardware
instruction when available.

Supports Floats and Vectors of floats.

@log2 §

@log2 (value: anytype) @TypeOf (value)

Returns the logarithm to the base 2 of a floating point number. Uses a dedicated hardware
instruction when available.

Supports Floats and Vectors of floats.

@log10 §

@loglO (value: anytype) QTypeOf (value)

Returns the logarithm to the base 10 of a floating point number. Uses a dedicated hardware
instruction when available.

Supports Floats and Vectors of floats.

(@fabs §

Qfabs (value: anytype) QTypeOf (value)

Returns the absolute value of a floating point number. Uses a dedicated hardware
instruction when available.

Supports Floats and Vectors of floats.

@floor §

Q@floor (value: anytype) @TypeOf (value)

Returns the largest integral value not greater than the given floating point number. Uses a
dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@ceil §
@Qceil (value: anytype) @QTypeOf (value)

Returns the smallest integral value not less than the given floating point number. Uses a
dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@trunc §

@trunc (value: anytype) QTypeOf (value)

Rounds the given floating point number to an integer, towards zero. Uses a dedicated
hardware instruction when available.

Supports Floats and Vectors of floats.

@round §

@round (value: anytype) Q@TypeOf (value)

Rounds the given floating point number to an integer, away from zero. Uses a dedicated
hardware instruction when available.

Supports Floats and Vectors of floats.

@subWithOverflow §

@subWithOverflow(a: anytype, b: anytype) struct { QTypeOf(a, b), ul }

Performs a - b and returns a tuple with the result and a possible overflow bit.

@tagName §

@tagName (value: anytype) [:0]const u8
Converts an enum value or union value to a string literal representing the name.

If the enum is non-exhaustive and the tag value does not map to a name, it invokes safety-
checked Undefined Behavior.

@This §

@This () type

Returns the innermost struct, enum, or union that this function call is inside. This can be
useful for an anonymous struct that needs to refer to itself:

const std = @import ("std");
const expect = std.testing.expect;

test "@This ()" {
var items = [1i32{ 1, 2, 3, 4 };
const list = List(i32){ .items = items[0..] };

try expect (list.length() == 4);
}

fn List (comptime T: type) type {
return struct {
const Self = @This();
items: []T,
fn length(self: Self) usize {
return self.items.len;
}
}i
}
test_this_builtin.zig
S zig test test this builtin.zig
1/1 test.@QThis()... OK
All 1 tests passed.

Shell

When @This () is used at file scope, it returns a reference to the struct that corresponds to
the current file.

(@trap §

@trap() noreturn

This function inserts a platform-specific trap/jam instruction which can be used to exit the
program abnormally. This may be implemented by explicitly emitting an invalid instruction
which may cause an illegal instruction exception of some sort. Unlike for @breakpoint (),
execution does not continue after this point.

Outside function scope, this builtin causes a compile error.

See also:

e (@breakpoint

(@truncate §

@truncate (integer: anytype) anytype

This function truncates bits from an integer type, resulting in a smaller or same-sized
integer type. The return type is the inferred result type.

This function always truncates the significant bits of the integer, regardless of endianness
on the target platform.

Calling @truncate on a number out of range of the destination type is well defined and
working code:

const std = @import ("std");
const expect = std.testing.expect;

test "integer truncation" {
var a: ul6 = Oxabcd;
var b: u8 = @Qtruncate(a);
try expect (b == 0xcd);

}

test_truncate builtin.zig

$ zig test test truncate builtin.zig
1/1 test.integer truncation... OK
All 1 tests passed.

Shell

Use @intCast to convert numbers guaranteed to fit the destination type.

@Type §
QType (comptime info: std.builtin.Type) type
This function is the inverse of @typelnfo. It reifies type information into a type.

It is available for the following types:

type

noreturn

void

bool

Integers - The maximum bit count for an integer type is 65535.
Floats

Pointers

comptime int
comptime float
QTypeOf (undefined)
@TypeOf (null)
Arrays

Optionals

Error Set Type

Error Union Type
Vectors

opaque
anyframe
struct

enum

Enum Literals
union
Functions

@typelnfo §

@typeInfo (comptime T: type) std.builtin.Type

Provides type reflection.

Type information of structs, unions, enums, and error sets has fields which are guaranteed
to be in the same order as appearance in the source file.

Type information of structs, unions, enums, and opaques has declarations, which are also
guaranteed to be in the same order as appearance in the source file.

@typeName §

@typeName (T: type) *const [N:0]u8

This function returns the string representation of a type, as an array. It is equivalent to a
string literal of the type name. The returned type name is fully qualified with the parent
namespace included as part of the type name with a series of dots.

@TypeOf §

@TypeOf (...) type

@TypeOf is a special builtin function that takes any (nonzero) number of expressions as
parameters and returns the type of the result, using Peer Type Resolution.

The expressions are evaluated, however they are guaranteed to have no runtime side-
effects:

const std = @import ("std");
const expect = std.testing.expect;

test "no runtime side effects" {
var data: i32 = 0;
const T = @TypeOf (foo(i32, &data));
try comptime expect (T == i32);
try expect (data == 0);
}

fn foo(comptime T: type, ptr: *T) T {
ptr.* += 1;
return ptr.*;

}

test_ TypeOf_builtin.zig

S zig test test TypeOf builtin.zig

1/1 test.no runtime side effects... OK

All 1 tests passed.

Shell

@unionlnit §

@unionInit (comptime Union: type, comptime active field name: []const u8,
init expr) Union

This is the same thing as union initialization syntax, except that the field name is a
comptime-known value rather than an identifier token.

@unionInit forwards its result location to init_expr.

@Vector §

@Vector (len: comptime int, Element: type) type

Creates Vectors.

@volatileCast §

@volatileCast (value: anytype) DestType

Remove volatile qualifier from a pointer.

@workGroupld §

@workGroupId (comptime dimension: u32) u32

Returns the index of the work group in the current kernel invocation in dimension

dimension.

@workGroupSize §

@workGroupSize (comptime dimension: u32) u32

Returns the number of work items that a work group has in dimension dimension.

@worklItemld §

@workItemId (comptime dimension: u32) u32

Returns the index of the work item in the work group in dimension dimension. This
function returns values between 0 (inclusive) and @workGroupSize (dimension)
(exclusive).

Build Mode §

Zig has four build modes:

Debug (default)
ReleaseFast
ReleaseSafe
ReleaseSmall

To add standard build options to a build.zig file:

const std = @import ("std");

pub fn build(b: *std.Build) void {

}

const optimize = b.standardOptimizeOption(.{});
const exe = b.addExecutable (. {
.name = "example",
.root_source_file = .{ .path = "example.zig"
.optimize = optimize,
1)
b.default_step.dependOn (&exe.step) ;

build.zig

This causes these options to be available:

-Doptimize=Debug

Optimizations off and safety on (default)
-Doptimize=ReleaseSafe

Optimizations on and safety on
-Doptimize=ReleaseFast

Optimizations on and safety off
-Doptimize=ReleaseSmall

Size optimizations on and safety off

Debug §

$ zig build-exe example.zig

Shell

Fast compilation speed

Safety checks enabled

Slow runtime performance

Large binary size

No reproducible build requirement

ReleaseFast §

$ zig build-exe example.zig -O ReleaseFast

Shell

Fast runtime performance
Safety checks disabled
Slow compilation speed
Large binary size
Reproducible build

ReleaseSafe §

$ zig build-exe example.zig -O ReleaseSafe

Shell

e Medium runtime performance
o Safety checks enabled

b

e Slow compilation speed
e Large binary size
e Reproducible build

ReleaseSmall §
$ zig build-exe example.zig -O ReleaseSmall

Shell

Medium runtime performance
Safety checks disabled

Slow compilation speed
Small binary size
Reproducible build

See also:

e Compile Variables
e Zig Build System
e Undefined Behavior

Single Threaded Builds §

Zig has a compile option -fsingle-threaded which has the following effects:

e All Thread Local Variables are treated as regular Container Level Variables.

e The overhead of Async Functions becomes equivalent to function call overhead.

e The @import ("builtin") .single threaded becomes true and therefore various
userland APIs which read this variable become more efficient. For example std.Mutex
becomes an empty data structure and all of its functions become no-ops.

Undefined Behavior §

Zig has many instances of undefined behavior. If undefined behavior is detected at compile-
time, Zig emits a compile error and refuses to continue. Most undefined behavior that
cannot be detected at compile-time can be detected at runtime. In these cases, Zig has
safety checks. Safety checks can be disabled on a per-block basis with
@setRuntimeSafety. The ReleaseFast and ReleaseSmall build modes disable all safety
checks (except where overridden by @setRuntimeSafety) in order to facilitate
optimizations.

When a safety check fails, Zig crashes with a stack trace, like this:
test "safety check" {
unreachable;

}

test_undefined behavior.zig

$ zig test test undefined behavior.zig
1/1 test.safety check... thread 2455728 panic: reached
unreachable code
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/test undefined behavior.zig:2:5:
0x224165 in test.safety check (test)
unreachable;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:176:28: 0x22d379 in
mainTerminal (test)
} else test fn.func();
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/test runner.zig:36:28: 0x225lca in
main (test)
return mainTerminal () ;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x2246a2 in
posixCallMainAndExit (test)
root.main();
/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x2241fl in
_start (test)
asm volatile (switch (native_arch) {

?2?2:2:2: 0x0 in 22?2 (2?227?)

error: the following test command crashed:
/home/ci/actions-runner/_ work/zig-bootstrap/out/zig-local-
cache/o/7d7£3a85belaldeb3cb4c93£04df3dc5/test

Shell

Reaching Unreachable Code §
At compile-time:

comptime {
assert (false);
}
fn assert (ok: bool) void {
if (!ok) unreachable; // assertion failure

}
test comptime reaching unreachable.zig

S zig test test comptime reaching unreachable.zig
docgen_tmp/test comptime reaching unreachable.zig:5:14: error:
reached unreachable code

if (!ok) unreachable; // assertion failure
docgen_tmp/test comptime reaching unreachable.zig:2:11: note:
called from here

assert (false);

Shell

At runtime:
const std = @import ("std");
pub fn main() void {
std.debug.assert (false);
}

runtime reaching_unreachable.zig

$ zig build-exe runtime reaching unreachable.zig
$./runtime reaching unreachable
thread 2455768 panic: reached unreachable code
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/debug.zig:343:14: 0x21fel2 in
assert (runtime reaching unreachable)

if (!ok) unreachable; // assertion failure
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/runtime reaching unreachable.zig:4:21

Ox2le64a in main (runtime reaching unreachable)

std.debug.assert (false);
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21def2 in
posixCallMainAndExit (runtime_ reaching unreachable)

root.main () ;

/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21dad4l in
_start (runtime reaching unreachable)

asm volatile (switch (native_arch) ({

~
??2?2:2:?2: 0x0 in 2?72 (227)

(process terminated by signal)
Shell

Index out of Bounds §

At compile-time:

comptime {

const array: [5]u8 = "hello".*;
const garbage = arrayl[5];
_ = garbage;

}
test_comptime_index_out of bounds.zig

$ zig test test_comptime_ index_ out_of bounds.zig
docgen_tmp/test_comptime_ index_out of bounds.zig:3:27: error:
index 5 outside array of length 5

const garbage = arrayl[5];

Shell

At runtime:

pub fn main() void {
var x = foo("hello");
= x;

fn foo(x: []Jconst u8) u8 {
return x[5];

}

runtime_index_out_of bounds.zig

$ zig build-exe runtime index out of bounds.zig
$./runtime index out of bounds
thread 2455808 panic: index out of bounds: index 5, len 5
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime index out of bounds.zig:7:13
0x2202b9 in foo (runtime index out of bounds)
return x[5];
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen tmp/runtime index out of bounds.zig:2:16
0x21e68b in main (runtime index out of bounds)
var x = foo("hello");

/home/ci/actions-runner/_ work/zig-

bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21df22 in

posixCallMainAndExit (runtime_index_ out_ of bounds)
root.main () ;

~

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21da7l in
start (runtime index out of bounds)

asm volatile (switch (native_arch) ({

~
??2?2:2:?2: 0x0 in 2?72 (227)

(process terminated by signal)

Shell

Cast Negative Number to Unsigned Integer §
At compile-time:

comptime {

var value: 132 = -1;
const unsigned: u32 = @intCast (value);
_ = unsigned;

}
test comptime_invalid cast.zig

$ zig test test_ comptime_ invalid cast.zig
docgen_tmp/test comptime invalid cast.zig:3:36: error: type
'u32' cannot represent integer value '-1'

const unsigned: u32 = @intCast(value);

~

Shell

At runtime:
const std = @import ("std");

pub fn main() void {
var value: 132 = -1;
var unsigned: u32 = QintCast (value);
std.debug.print ("value: {}\n", .{unsigned});
}

runtime_invalid cast.zig

$ zig build-exe runtime_invalid cast.zig
$./runtime invalid cast
thread 2455848 panic: attempt to cast negative value to
unsigned integer
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime invalid cast.zig:5:25:
O0x2le82a in main (runtime invalid cast)

var unsigned: u32 = @intCast (value);

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21e082 in
posixCallMainAndExit (runtime invalid cast)

root.main() ;

~

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21dbdl in
_start (runtime invalid cast)

asm volatile (switch (native_arch) ({

???2:2:2: 0x0 in 2272 (227?)

(process terminated by signal)

Shell

To obtain the maximum value of an unsigned integer, use std.math.maxInt.

Cast Truncates Data §

At compile-time:

comptime {

const spartan count: ulé = 300;
const byte: u8 = @intCast (spartan count);
_ = byte;

}
test_comptime_invalid_cast_truncate.zig

$ zig test test comptime invalid cast truncate.zig

docgen tmp/test comptime invalid cast truncate.zig:3:31:

error: type 'u8' cannot represent integer value '300'
const byte: u8 = @intCast (spartan count);

Shell
At runtime:

const std = @import ("std");

pub fn main() void {
var spartan_count: ulé = 300;
const byte: u8 = @intCast (spartan_ count);
std.debug.print ("value: {}\n", .{byte});

}

runtime_invalid cast truncate.zig

$ zig build-exe runtime invalid cast truncate.zig
$./runtime invalid cast truncate
thread 2455888 panic: integer cast truncated bits
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime invalid cast truncate.zig:5:2
0x21e8fl in main (runtime invalid cast truncate)

const byte: u8 = @intCast (spartan count);
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21eld2 in
posixCallMainAndExit (runtime_invalid cast_truncate)

root.main () ;

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21dc9l in
_start (runtime invalid cast truncate)

asm volatile (switch (native arch) ({
??2?2:2:2: 0x0 in 22?2 (?227?)

(process terminated by signal)

4 [+
Shell

To truncate bits, use @truncate.

Integer Overflow §

Default Operations §

The following operators can cause integer overflow:

+ (addition)

- (subtraction)

- (negation)

* (multiplication)

/ (division)
(@divTrunc (division)
@divFloor (division)
(@divExact (division)

Example with addition at compile-time:

comptime {
var byte: u8 = 255;
byte += 1;

}

test_comptime_overflow.zig

$ zig test test comptime overflow.zig
docgen tmp/test comptime overflow.zig:3:10: error: overflow of
integer type 'u8' with value '256'

byte += 1;

Shell

At runtime:

const std = @import ("std");

pub fn main() void {

var byte: u8 = 255;

byte += 1;

std.debug.print ("value: {}\n", .{byte});
}

runtime_overflow.zig

$ zig build-exe runtime overflow.zig
$./runtime overflow
thread 2455928 panic: integer overflow
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime overflow.zig:5:10: 0x2le8ce
in main (runtime overflow)

byte += 1;

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21eld2 in
posixCallMainAndExit (runtime overflow)
root.main () ;

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21dc9l in
_start (runtime overflow)

asm volatile (switch (native_arch) ({
??2?2:2:2: 0x0 in 22?2 (?227)

(process terminated by signal)

Shell

Standard Library Math Functions §

These functions provided by the standard library return possible errors.

Q@import ("std") .math.add
@import ("std") .math.sub
Q@import ("std") .math.mul

Q@import ("std") .math.divFloor
.math.divExact

.math.shl

@import ("std"

()
()
()
@import ("std") .math.divTrunc
()
()
()

@import ("std"
Example of catching an overflow for addition:

const math = @import ("std") .math;
const print = @import ("std").debug.print;
pub fn main() !void {

var byte: u8 = 255;

byte = if (math.add(u8, byte, 1)) |result| result else
lerr| {
print ("unable to add one: {s}\n", .{QerrorName (err)});
return err;

}i

print ("result: {}\n", .{byte});
}

math_add.zig

$ zig build-exe math_add.zig
$./math_add
unable to add one: Overflow
error: Overflow
/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/std/math.zig:475:21: 0x21e6f5 in
add__anon_3060 (math_add)
if (ov[1l] != 0) return error.Overflow;

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_ tmp/math add.zig:8:9: 0x21e68d in main
(math_add)

return err;

~

Shell
Builtin Overflow Functions §

These builtins return a tuple containing whether there was an overflow (as a ul) and the
possibly overflowed bits of the operation:

@addWithOverflow
(@subWithOverflow
@mulWithOverflow
@shlWithOverflow

Example of @addWithOverflow:

const print = Qimport ("std") .debug.print;
pub fn main() void {
var byte: u8 = 255;

const ov = QaddWithOverflow (byte, 10);

if (ov([1l] != 0) {
print ("overflowed result: {}\n", .{ov[0]});
} else {

print ("result: {}\n", .{ov[0]});
}
}

addWithOverflow _builtin.zig

$ zig build-exe addWithOverflow builtin.zig
$./addWwithOverflow builtin
overflowed result: 9

Shell

Wrapping Operations §

These operations have guaranteed wraparound semantics.

+% (wraparound addition)
-3 (wraparound subtraction)

*

[
©
o
S

-% (wraparound negation)

(wraparound multiplication)

const std = Qimport ("std");

const expect = std.testing.expect;
const minInt = std.math.minlInt;
const maxInt = std.math.maxInt;

test "wraparound addition and subtraction" {
const x: 132 = maxInt(132);
const min_val = x +% 1;

try expect (min_val == minInt(i32));
const max val = min_val -% 1;
try expect (max_val == maxInt(i32));

}

test wraparound semantics.zig

S zig test test wraparound semantics.zig

1/1 test.wraparound addition and subtraction... OK

All 1 tests passed.

Shell

Exact Left Shift Overflow §

At compile-time:

comptime {
const x = @shlExact (@as(u8, 0b01010101), 2);
= x;

}
test_comptime_shlExact overwlow.zig

$ zig test test comptime shlExact overwlow.zig

docgen tmp/test comptime shlExact overwlow.zig:2:15:

operation caused overflow
const x = @shlExact (@as(u8, 0b01010101), 2);

error:

Shell

At runtime:
const std = @import ("std");

pub fn main() void {
var x: u8 = 0b01010101;
var y = @shlExact(x, 2);
std.debug.print ("value: {}\n", .{y});
}

runtime_shlExact_overflow.zig

$ zig build-exe runtime_shlExact_overflow.zig
$./runtime_shlExact_overflow
thread 2456051 panic: left shift overflowed bits
/home/ci/actions-runner/_work/zig-
bootstrap/zig/docgen_tmp/runtime shlExact_ overflow.zig:5:5:
0x21e915 in main (runtime_shlExact_overflow)

var y = @shlExact(x, 2);

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21el62 in
posixCallMainAndExit (runtime_ shlExact overflow)
root.main() ;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21ldcbl in
_start (runtime shlExact overflow)
asm volatile (switch (native_ arch) ({

?22?2:2:2: 0x0 in 22?2 (2?2272)
(process terminated by signal)

Shell

Exact Right Shift Overflow §
At compile-time:

comptime {
const x = @shrExact (@as(u8, 0b10101010), 2);
= x;

}
test comptime_shrExact_overflow.zig

$ zig test test_comptime_ shrExact_overflow.zig
docgen_tmp/test comptime shrExact overflow.zig:2:15: error:
exact shift shifted out 1 bits

const x = @shrExact (@as(u8, 0b10101010), 2);

Shell

At runtime:
const std = @import ("std");

pub fn main() void {
var x: u8 = 0b10101010;
var y = @shrExact(x, 2);
std.debug.print ("value: {}\n", .{y});
}

runtime_shrExact_overflow.zig

$ zig build-exe runtime shrExact overflow.zig
$./runtime shrExact overflow
thread 2456091 panic: right shift overflowed bits
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime shrExact overflow.zig:5:5:
0x21e90e in main (runtime shrExact overflow)

var y = @shrExact(x, 2);

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21el62 in
posixCallMainAndExit (runtime shrExact overflow)
root.main () ;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21ldcbl in
_start (runtime shrExact overflow)
asm volatile (switch (native_arch) ({

~
??2?2:2:?: 0x0 in 2?72 (227)

(process terminated by signal)

Shell

Division by Zero §
At compile-time:

comptime {
const a: 132 = 1;
const b: 132 = 0;
const ¢ = a / b;
_ =<

}
test comptime_division_by_zero.zig

$ zig test test_ comptime_ division_by_ zero.zig
docgen_tmp/test_comptime_division_ by zero.zig:4:19: error:
division by zero here causes undefined behavior

const ¢ = a / b;

Shell

At runtime:
const std = @import ("std");

pub fn main() void {

var a: u32 = 1;

var b: u32 = 0;

var ¢ = a / b;

std.debug.print ("value: {}\n", .{c});
}

runtime_division_by_zero.zig

S zig build-exe runtime division by zero.zig
$./runtime_division_ by zero
thread 2456131 panic: division by zero
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen_ tmp/runtime division by zero.zig:6:15:
0x21e83e in main (runtime division by =zero)

var ¢ = a / b;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21e082 in
posixCallMainAndExit (runtime division by =zero)

root.main();

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21ldbdl in
_start (runtime division by zero)

asm volatile (switch (native_ arch) {

~
??2:2:?: 0x0 in ?2?? (227)

(process terminated by signal)

Shell

Remainder Division by Zero §
At compile-time:

comptime {
const a: i32 = 10;
const b: 132 = 0;
const ¢ = a % b;
= c;

}
test comptime remainder division by zero.zig

S zig test test comptime remainder division by zero.zig
docgen tmp/test comptime remainder division by zero.zig:4:19:
error: division by zero here causes undefined behavior

o

const ¢ = a % b;
~

Shell

At runtime:
const std = @import ("std");

pub fn main() void {

var a: u32 = 10;

var b: u32 = 0;

var ¢ = a % b;

std.debug.print ("value: {}\n", .{c});
}

runtime remainder division by zero.zig

$ zig build-exe runtime_remainder division_ by zero.zig
$./runtime_remainder_division_by_zero
thread 2456173 panic: division by zero
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen_tmp/runtime remainder_division_ by zero.zi
0x21e83e in main (runtime remainder division by zero)
var ¢ = a % b;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:564:22: 0x21e082 in
posixCallMainAndExit (runtime_remainder division_ by zero)
root.main() ;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:243:5: 0x21dbdl in
_start (runtime_remainder division_ by zero)

asm volatile (switch (native_arch) {

?2?2?2:2:?2: 0x0 in 2?27? (2?27?)
(process terminated by signal)
1 |

Shell

Exact Division Remainder §

At compile-time:

comptime {
const a: u32 = 10;
const b: u32 = 3;
const ¢ = Q@divExact(a, b);
= c;

}

test_comptime_divExact remainder.zig

$ zig test test comptime divExact remainder.zig
docgen tmp/test comptime divExact remainder.zig:4:15: error:
exact division produced remainder

const ¢ = @divExact(a, b);

Shell

At runtime:
const std = @import ("std");

pub fn main() void {
var a: u32 = 10;
var b: u32 = 3;
var ¢ = @divExact(a, b);
std.debug.print ("value: {}\n", .{c});
}

runtime_divExact remainder.zig

$ zig build-exe runtime divExact remainder.zig
$./runtime divExact remainder
thread 2456213 panic: exact division produced remainder
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime divExact remainder.zig:6:13:
0x21e898 in main (runtime divExact remainder)

var ¢ = @divExact(a, b);

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x2lela2 in
posixCallMainAndExit (runtime divExact remainder)
root.main () ;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21ldbfl in
_start (runtime divExact remainder)

asm volatile (switch (native_arch) ({
???2:2:2: 0x0 in 22?2 (?27?27?)

(process terminated by signal)

Shell

Attempt to Unwrap Null §
At compile-time:

comptime {
const optional number: 2?i32 = null;
const number = optional number.?;
= number;

}

test_comptime unwrap_null.zig

S zig test test comptime unwrap_ null.zig
docgen_tmp/test_comptime unwrap_ null.zig:3:35: error: unable

to unwrap null
const number = optional number.?;

Shell

At runtime:
const std = @import ("std");

pub fn main() void {
var optional number: ?i32 = null;
var number = optional number.?;
std.debug.print ("value: {}\n", .{number});
}

runtime_unwrap_null.zig

$ zig build-exe runtime unwrap null.zig
$./runtime unwrap null
thread 2456253 panic: attempt to use null value
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime unwrap null.zig:5:33:
Ox2le8fa in main (runtime unwrap null)

var number = optional number.?;
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21el52 in
posixCallMainAndExit (runtime unwrap null)

root.main () ;

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21ldcal in
_start (runtime unwrap null)

asm volatile (switch (native arch) ({
??2?2:2:2: 0x0 in 22?2 (?227?)

(process terminated by signal)

Shell

One way to avoid this crash is to test for null instead of assuming non-null, with the i f
expression:

const print = Qimport ("std") .debug.print;
pub fn main() void {
const optional number: 2i32 = null;
if (optional number) |[number| {
print ("got number: {}\n", .{number});
} else {
print ("it's null\n", .{});
}
testing_null with if.zig
$ zig build-exe testing null_with if.zig
$./testing null_with_if
it's null

Shell

See also:

e Optionals

Attempt to Unwrap Error §
At compile-time:

comptime {

const number = getNumberOrFail () catch unreachable;
_ = number;

}

fn getNumberOrFail () !i32 {

return error.UnableToReturnNumber;

}
test_comptime unwrap_error.zig

$ zig test test comptime unwrap error.zig
docgen tmp/test comptime unwrap error.zig:2:44: error: caught
unexpected error 'UnableToReturnNumber'

const number = getNumberOrFail () catch unreachable;

Shell

At runtime:

const std = @import ("std");

pub fn main() void {
const number = getNumberOrFail () catch unreachable;
std.debug.print ("value: {}\n", .{number});

fn getNumberOrFail () !i32 {
return error.UnableToReturnNumber;

}
runtime_unwrap_error.zig

$ zig build-exe runtime unwrap error.zig
$./runtime unwrap error
thread 2456320 panic: attempt to unwrap error:
UnableToReturnNumber
/home/ci/actions-runner/_work/zig-
bootstrap/zig/docgen_tmp/runtime unwrap_error.zig:9:5:
0x22053f in getNumberOrFail (runtime_ unwrap_error)
return error.UnableToReturnNumber;
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_tmp/runtime unwrap_ error.zig:4:44:
0x21e941 in main (runtime unwrap_error)
const number = getNumberOrFail () catch unreachable;

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21el82 in
posixCallMainAndExit (runtime_ unwrap_error)

root.main();

~

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21dcdl in
_start (runtime unwrap error)

asm volatile (switch (native arch) ({

?22?2:2:2: 0x0 in 22?2 (227?2)
(process terminated by signal)

Shell

One way to avoid this crash is to test for an error instead of assuming a successful result,
with the if expression:

const print = Qimport ("std") .debug.print;

pub fn main() void {
const result = getNumberOrFail ();

if (result) |[number| {
print ("got number: {}\n", .{number});

} else |err| {
print ("got error: {s}\n", .{Q@errorName (err)});

fn getNumberOrFail () !i32 {
return error.UnableToReturnNumber;

}
testing_error_with_if.zig
$ zig build-exe testing error with if.zig

$./testing error with if
got error: UnableToReturnNumber

Shell
See also:

e Errors

Invalid Error Code §

At compile-time:

comptime {
const err = error.AnError;
const number = @intFromError (err) + 10;
const invalid err QerrorFromInt (number) ;
= invalid err;

}
test_comptime_invalid_error_code.zig

$ zig test test comptime invalid error code.zig

docgen tmp/test comptime invalid error code.zig:4:39:

integer value 'll' represents no error
const invalid err @errorFromInt (number) ;

Shell

At runtime:

const std = Qimport ("std");

pub fn main() void {
var err = error.AnError;
var number = @intFromError (err) + 500;
var invalid err = @errorFromInt (number) ;
std.debug.print ("value: {}\n", .{invalid err});

}
runtime_invalid _error_code.zig

$ zig build-exe runtime invalid error code.zig
S ./runtimeiinvalidﬁerrorfcode

thread 2456387 panic: invalid error code
/home/ci/actions-runner/ work/zig-

error:

bootstrap/zig/docgen tmp/runtime invalid error code.zig:6:5:

0x21e8c9 in main (runtime invalid error code)
var invalid_err = QerrorFromInt (number) ;

~

/home/ci/actions-runner/ work/zig-

bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21el02 in

posixCallMainAndExit (runtime_invalid error_ code)
root.main () ;

A~

/home/ci/actions-runner/ work/zig-

bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21ldc51 in

_start (runtime invalid error_code)
asm volatile (switch (native_arch) ({

N

???2:2:2: 0x0 in 2272 (227?)

(process terminated by signal)

Shell

Invalid Enum Cast §

At compile-time:

const Foo = enum {
a,
b,
Cy
}i
comptime {
const a: u2 = 3;
const b: Foo = @enumFromInt (a);
= b;

}

test_ comptime invalid enum_cast.zig

$ zig test test comptime invalid enum cast.zig
docgen tmp/test comptime invalid enum cast.zig:8:20: error:
enum 'test comptime invalid enum cast.Foo' has no tag with
value '3'

const b: Foo = @enumFromInt (a);
docgen tmp/test comptime invalid enum cast.zig:1:13: note:
enum declared here
const Foo = enum {

A

Shell

At runtime:
const std = Qimport ("std");
const Foo = enum {
a,

b,
cr

pub fn main() void {

var a: u2 = 3;
var b: Foo = @enumFromInt (a);
std.debug.print ("value: {s}\n", .{Q@tagName(b)});

}
runtime_invalid enum_cast.zig

$ zig build-exe runtime invalid enum cast.zig
$./runtime invalid enum cast
thread 2456427 panic: invalid enum value
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime invalid enum cast.zig:11:18:
0x21e87f in main (runtime invalid enum cast)

var b: Foo = @enumFromInt (a);
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21e0d2 in
posixCallMainAndExit (runtime invalid enum cast)

root.main () ;

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21dc2l in
_start (runtime invalid enum cast)

asm volatile (switch (native arch) ({
??2?2:2:2: 0x0 in 22?2 (?227)

(process terminated by signal)

Shell

Invalid Error Set Cast §

At compile-time:

const Setl = error({
A,
B,
}i
const Set2 = error({
A,
C,
}i
comptime {
_ = Qas(Set2, RerrSetCast(Setl.B));
}

test_comptime_invalid error set cast.zig

$ zig test test_comptime_ invalid error_set_cast.zig
docgen_tmp/test_comptime_invalid_error_set_cast.zig:10:19:
error: 'error.B' not a member of error set 'error{C,A}"

_ = Ras(Set2, RerrSetCast(Setl.B));

Shell

At runtime:
const std = @import ("std");

const Setl = error({
A,
B,
}i
const Set2 = error({
A,
C,
}i
pub fn main() void {
foo (Setl.B);
}
fn foo(setl: Setl) void {
const x: Set2 = (@errSetCast (setl);
std.debug.print ("value: {}\n", .{x});
}

runtime_invalid error_set cast.zig

$ zig build-exe runtime invalid error_ set cast.zig
$./runtime_invalid_ error_set cast
thread 2456467 panic: invalid error code
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_tmp/runtime_ invalid error_ set cast.zig:15
0x2204dc in foo (runtime invalid error set cast)
const x: Set2 = @errSetCast(setl);
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen_tmp/runtime invalid error set_ cast.zig:12
0x21e88d in main (runtime invalid error set cast)
foo(Setl.B);
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21el32 in
posixCallMainAndExit (runtime invalid error set cast)
root.main() ;
/home/ci/actions-runner/ work/zig-
bootstrap/out/host/1lib/zig/std/start.zig:243:5: 0x21dc8l in
_start (runtime_invalid error_ set_cast)
asm volatile (switch (native_arch) {

~
??22:2:2: 0x0 in 22?2 (222)

(process terminated by signal)

1 =]
Shell

Incorrect Pointer Alignment §
At compile-time:

comptime {
const ptr: *align(l) i32 = @ptrFromInt (0x1);
const aligned: *align(4) i32 = @alignCast (ptr);
_ = aligned;

}
test comptime incorrect pointer alignment.zig

S zig test test comptime incorrect pointer alignment.zig
docgen tmp/test comptime incorrect pointer alignment.zig:3:47
error: pointer address 0xl is not aligned to 4 bytes
const aligned: *align(4) 132 = @alignCast (ptr);

Shell

At runtime:

const mem = @import ("std") .mem;
pub fn main() !void {
var array align(4) = [Ju32{ 0x11111111, 0x11111111 };
const bytes = mem.sliceAsBytes(array[0..]);
if (foo(bytes) != 0x11111111) return error.Wrong;
}
fn foo(bytes: [Ju8) u32 {
const slice4 = bytes[l..5];
const int slice = mem.bytesAsSlice(u32, Ras([]align(4) u8,
@alignCast (sliced)));
return int slice([0];

}
runtime_incorrect_pointer_alignment.zig

$ zig build-exe runtime incorrect pointer alignment.zig
$./runtime_incorrect_ pointer alignment
thread 2456507 panic: incorrect alignment
/home/ci/actions-runner/_work/zig-
bootstrap/zig/docgen_tmp/runtime_ incorrect_pointer alignment.z

0x21e43f in foo (runtime incorrect pointer alignment)

const int_slice = mem.bytesAsSlice(u32, Qas([]align(4) u8,

@alignCast (sliced)));

~

/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_tmp/runtime_ incorrect_ pointer alignment.z
0x21e33f in main (runtime_incorrect pointer_ alignment)
if (foo(bytes) != 0x11111111) return error.Wrong;

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:574:37: 0x2le24e in
posixCallMainAndExit (runtime incorrect pointer alignment)
const result = root.main() catch |err| {

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21dd31 in
_start (runtime incorrect pointer alignment)

asm volatile (switch (native arch) {

??2?2:2:2: 0x0 in 2272 (227?)
(process terminated by signal)
1

Shell

Wrong Union Field Access §
At compile-time:

comptime {
var £ = Foo{ .int = 42 };
f.float = 12.34;

const Foo = union {
float: £32,
int: u32,

}i

test_comptime wrong_union_field access.zig

$ zig test test comptime wrong union field access.zig
docgen tmp/test comptime wrong union field access.zig:3:6:
error: access of union field 'float' while field 'int' is
active

f.float = 12.34;

docgen tmp/test comptime wrong union field access.zig:6:13:
note: union declared here
const Foo = union {

A

Shell

At runtime:

const std = @import ("std");

const Foo = union ({
float: £32,
int: u32,

}i

pub fn main() void {
var f = Foo{ .int = 42 };
bar (&f) ;

fn bar(f: *Foo) void {

f.float = 12.34;

std.debug.print ("value: {}\n", .{f.float});
}

runtime_wrong_union_field_access.zig

S zig build-exe runtime wrong union_field access.zig
$./runtime_wrong_union_field access
thread 2456547 panic: access of union field 'float' while
field 'int' is active
/home/ci/actions-runner/_work/zig-
bootstrap/zig/docgen_ tmp/runtime wrong union_field access.zig:
0x234cc0 in bar (runtime wrong union_ field access)

f.float = 12.34;
/home/ci/actions-runner/_ work/zig-
bootstrap/zig/docgen_tmp/runtime_ wrong union_field access.zig:

0x23308c in main (runtime_ wrong union_ field access)

bar (&f) ;
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x232922 in
posixCallMainAndExit (runtime wrong union field access)

root.main();

/home/ci/actions-runner/ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x232471 in
_start (runtime wrong union field access)

asm volatile (switch (native arch) ({

??2?2:2:2: 0x0 in 2272 (227?)
(process terminated by signal)

1 pEeag]
Shell

This safety is not available for extern or packed unions.

To change the active field of a union, assign the entire union, like this:
const std = Qimport ("std");

const Foo = union {
float: £32,
int: u32,

i

pub fn main() void {
var £ = Foo{ .int = 42 };
bar (&f) ;

fn bar(f: *Foo) void {
f.* = Foo{ .float = 12.34 };
std.debug.print ("value: {}\n", .{f.float});
}

change active union_field.zig
$ zig build-exe change active union field.zig
S ./changeiactiveiunionifield

value: 1.23400001le+01

Shell

To change the active field of a union when a meaningful value for the field is not known,
use undefined, like this:

const std = @import ("std");

const Foo = union ({
float: £32,
int: u32,

}i

pub fn main() void {

var f = Foo{ .int = 42 };

f = Foo{ .float = undefined };

bar (&f) ;

std.debug.print ("value: {}\n", .{f.float});
}

fn bar(f: *Foo) wvoid {
f.float = 12.34;
}

undefined_active_union_field.zig

S zig build-exe undefined active union_ field.zig
$./undefined active_union_field
value: 1.23400001e+01

Shell
See also:

e union
e extern union

Out of Bounds Float to Integer Cast §

This happens when casting a float to an integer where the float has a value outside the
integer type's range.

At compile-time:

comptime {

const float: £32 = 4294967296;

const int: 132 = @intFromFloat (float);
= int;

}
test_comptime_out_of bounds_float to_integer cast.zig

$ zig test

test comptime out of bounds float to integer cast.zig

docgen tmp/test comptime out of bounds float to integer cast.
error: float value '4294967296' cannot be stored in integer

type 'i32'

const int: i32 = @intFromFloat (float);

Ammnn

1 ‘ :LJ
Shell

At runtime:

pub fn main() void {

var float: £32 = 4294967296;

var int: 132 = @intFromFloat (float);
_ = int;

}

runtime_out_of bounds float to integer cast.zig

$ zig build-exe
runtime out of bounds float to integer cast.zig
$./runtime out of bounds float to integer cast
thread 2456641 panic: integer part of floating point value out
of bounds
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime out of bounds float to intege
0x21le70e in main
(runtime out of bounds float to integer cast)
var int: i32 = QintFromFloat (float);
/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21df42 in
posixCallMainAndExit
(runtime out of bounds float to integer cast)
root.main () ;
/home/ci/actions-runner/_work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21da9l in
_start (runtime out_of bounds_ float to_integer cast)
asm volatile (switch (native_arch) ({
???2:2:2: 0x0 in 2272 (227?)

(process terminated by signal)

« | i
Shell

Pointer Cast Invalid Null §

This happens when casting a pointer with the address 0 to a pointer which may not have
the address 0. For example, C Pointers, Optional Pointers, and allowzero pointers allow
address zero, but normal Pointers do not.

At compile-time:

comptime {
const opt ptr: ?*i32 = null;
const ptr: *i32 = @ptrCast (opt ptr);
_ = ptr;

}

test_comptime_invalid_null pointer cast.zig

$ zig test test comptime invalid null pointer cast.zig
docgen tmp/test comptime invalid null pointer cast.zig:3:32:
error: null pointer casted to type '*i32'

const ptr: *i32 = @ptrCast (opt ptr);

Shell
At runtime:

pub fn main() void {
var opt ptr: ?*i32 = null;
var ptr: *i32 = @ptrCast (opt_ptr);
_ = ptr;

}

runtime_invalid null pointer cast.zig

$ zig build-exe runtime_invalid null_ pointer cast.zig
$./runtime invalid null pointer cast
thread 2456681 panic: cast causes pointer to be null
/home/ci/actions-runner/ work/zig-
bootstrap/zig/docgen tmp/runtime invalid null pointer cast.zig
0x21e691 in main (runtime invalid null pointer cast)
var ptr: *i32 = @ptrCast (opt ptr);

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:564:22: 0x21def2 in
posixCallMainAndExit (runtime_invalid null_ pointer cast)
root.main () ;

/home/ci/actions-runner/_ work/zig-
bootstrap/out/host/lib/zig/std/start.zig:243:5: 0x21dad4l in
_start (runtime invalid null pointer cast)

asm volatile (switch (native_arch) ({
???2:2:2: 0x0 in 2?27? (2727?)

(process terminated by signal)

Memory §

The Zig language performs no memory management on behalf of the programmer. This is
why Zig has no runtime, and why Zig code works seamlessly in so many environments,
including real-time software, operating system kernels, embedded devices, and low latency
servers. As a consequence, Zig programmers must always be able to answer the question:

Where are the bytes?

Like Zig, the C programming language has manual memory management. However, unlike
Zig, C has a default allocator - malloc, realloc, and free. When linking against libc, Zig
exposes this allocator with std.heap.c allocator. However, by convention, there is no
default allocator in Zig. Instead, functions which need to allocate accept an Allocator
parameter. Likewise, data structures such as std.ArrayList accept an Allocator
parameter in their initialization functions:

const std = @import ("std");
const Allocator = std.mem.Allocator;
const expect = std.testing.expect;

test "using an allocator" ({
var buffer: [100]u8 = undefined;
var fba = std.heap.FixedBufferAllocator.init (&buffer);
const allocator = fba.allocator();
const result = try concat(allocator, "foo", "bar");
try expect (std.mem.eql (u8, "foobar", result));

fn concat(allocator: Allocator, a: []Jconst u8, b: []Jconst u8)
'[lu8 {
const result = try allocator.alloc(u8, a.len + b.len);
std.mem.copy (u8, result, a);
std.mem.copy (u8, resultl[a.len..], b);
return result;

}
test_allocator.zig

S zig test test_allocator.zig
1/1 test.using an allocator... OK
All 1 tests passed.

Shell

In the above example, 100 bytes of stack memory are used to initialize a
FixedBufferAllocator, which is then passed to a function. As a convenience there is a
global FixedBufferallocator available for quick tests at std.testing.allocator,
which will also perform basic leak detection.

Zig has a general purpose allocator available to be imported with
std.heap.GeneralPurposeAllocator. However, it is still recommended to follow the

Choosing an Allocator guide.

Choosing an Allocator §

What allocator to use depends on a number of factors. Here is a flow chart to help you
decide:

1. Are you making a library? In this case, best to accept an Allocator as a parameter
and allow your library's users to decide what allocator to use.

2. Are you linking libc? In this case, std.heap.c_allocator is likely the right choice, at
least for your main allocator.

3. Is the maximum number of bytes that you will need bounded by a number known at
comptime? In this case, use std.heap.FixedBufferAllocator Or
std.heap.ThreadSafeFixedBufferAllocator depending on whether you need
thread-safety or not.

4. Is your program a command line application which runs from start to end without any
fundamental cyclical pattern (such as a video game main loop, or a web server request
handler), such that it would make sense to free everything at once at the end? In this
case, it is recommended to follow this pattern:

const std = @import ("std");

pub fn main() !void {
var arena =

std.heap.ArenaAllocator.init (std.heap.page_allocator);
defer arena.deinit();

const allocator = arena.allocator();

const ptr = try allocator.create(i32);
std.debug.print ("ptr={*}\n", .{ptr});
}

cli_allocation.zig

$ zig build-exe cli_allocation.zig
$./cli_allocation
ptr=1i32@7f1b2eaae010

Shell

When using this kind of allocator, there is no need to free anything manually.
Everything gets freed at once with the call to arena.deinit ().

5. Are the allocations part of a cyclical pattern such as a video game main loop, or a web
server request handler? If the allocations can all be freed at once, at the end of the
cycle, for example once the video game frame has been fully rendered, or the web
server request has been served, then std.heap.Arenahllocator is a great candidate.
As demonstrated in the previous bullet point, this allows you to free entire arenas at
once. Note also that if an upper bound of memory can be established, then
std.heap.FixedBufferAllocator can be used as a further optimization.

6. Are you writing a test, and you want to make sure error.out0fMemory is handled
correctly? In this case, use std.testing.FailingAllocator.

7. Are you writing a test? In this case, use std.testing.allocator.

8. Finally, if none of the above apply, you need a general purpose allocator. Zig's general
purpose allocator is available as a function that takes a comptime struct of
configuration options and returns a type. Generally, you will set up one
std.heap.GeneralPurposeAllocator in your main function, and then pass it or sub-
allocators around to various parts of your application.

9. You can also consider Implementing an Allocator.

Where are the bytes? §

String literals such as "foo" are in the global constant data section. This is why it is an
error to pass a string literal to a mutable slice, like this:

fn foo(s: []Ju8) void {

test "string literal to mutable slice" ({
foo("hello");
}

test_string_literal to_slice.zig

$ zig test test string literal to slice.zig

docgen tmp/test string literal to slice.zig:6:9: error:

expected type '[]u8', found '*const [5:0]u8'
foo("hello");

docgen_tmp/test_string literal to_slice.zig:6:9: note: cast
discards const qualifier
docgen_tmp/test_string literal to_slice.zig:1:11: note:
parameter type declared here

fn foo(s: [Ju8) void {

~

Shell

However if you make the slice constant, then it works:

fn foo(s: []const u8) void {
= s;

}

test "string literal to constant slice” {
foo("hello");
}

test_string_literal to_const_slice.zig

$ zig test test string literal to const slice.zig
1/1 test.string literal to constant slice... OK
All 1 tests passed.

Shell

Just like string literals, const declarations, when the value is known at comptime, are
stored in the global constant data section. Also Compile Time Variables are stored in the
global constant data section.

var declarations inside functions are stored in the function's stack frame. Once a function
returns, any Pointers to variables in the function's stack frame become invalid references,
and dereferencing them becomes unchecked Undefined Behavior.

var declarations at the top level or in struct declarations are stored in the global data
section.

The location of memory allocated with allocator.alloc or allocator.create is
determined by the allocator's implementation.

TODO: thread local variables

Implementing an Allocator §

Zig programmers can implement their own allocators by fulfilling the Allocator interface. In
order to do this one must read carefully the documentation comments in std/mem.zig and
then supply a allocFn and a resizeFn.

There are many example allocators to look at for inspiration. Look at std/heap.zig and

std.heap.GeneralPurposeAllocator.

Heap Allocation Failure §

Many programming languages choose to handle the possibility of heap allocation failure by
unconditionally crashing. By convention, Zig programmers do not consider this to be a
satisfactory solution. Instead, error.outofMemory represents heap allocation failure, and

Zig libraries return this error code whenever heap allocation failure prevented an operation
from completing successfully.

Some have argued that because some operating systems such as Linux have memory
overcommit enabled by default, it is pointless to handle heap allocation failure. There are
many problems with this reasoning:

e Only some operating systems have an overcommit feature.
o Linux has it enabled by default, but it is configurable.
o Windows does not overcommit.
o Embedded systems do not have overcommit.
o Hobby operating systems may or may not have overcommit.

e For real-time systems, not only is there no overcommit, but typically the maximum
amount of memory per application is determined ahead of time.

e When writing a library, one of the main goals is code reuse. By making code handle
allocation failure correctly, a library becomes eligible to be reused in more contexts.

e Although some software has grown to depend on overcommit being enabled, its
existence is the source of countless user experience disasters. When a system with
overcommit enabled, such as Linux on default settings, comes close to memory
exhaustion, the system locks up and becomes unusable. At this point, the OOM Killer
selects an application to kill based on heuristics. This non-deterministic decision often
results in an important process being killed, and often fails to return the system back to
working order.

Recursion §

Recursion is a fundamental tool in modeling software. However it has an often-overlooked
problem: unbounded memory allocation.

Recursion is an area of active experimentation in Zig and so the documentation here is not
final. You can read a summary of recursion status in the 0.3.0 release notes.

The short summary is that currently recursion works normally as you would expect.
Although Zig code is not yet protected from stack overflow, it is planned that a future
version of Zig will provide such protection, with some degree of cooperation from Zig
code required.

Lifetime and Ownership §

It is the Zig programmer's responsibility to ensure that a pointer is not accessed when the
memory pointed to is no longer available. Note that a slice is a form of pointer, in that it
references other memory.

In order to prevent bugs, there are some helpful conventions to follow when dealing with
pointers. In general, when a function returns a pointer, the documentation for the function
should explain who "owns" the pointer. This concept helps the programmer decide when it
is appropriate, if ever, to free the pointer.

For example, the function's documentation may say "caller owns the returned memory", in
which case the code that calls the function must have a plan for when to free that memory.
Probably in this situation, the function will accept an A1locator parameter.

Sometimes the lifetime of a pointer may be more complicated. For example, the
std.ArrayList (T) .items slice has a lifetime that remains valid until the next time the list
is resized, such as by appending new elements.

The API documentation for functions and data structures should take great care to explain
the ownership and lifetime semantics of pointers. Ownership determines whose
responsibility it is to free the memory referenced by the pointer, and lifetime determines the
point at which the memory becomes inaccessible (lest Undefined Behavior occur).

Compile Variables §

Compile variables are accessible by importing the "builtin" package, which the compiler

https://ziglang.org/download/0.3.0/release-notes.html#recursion

makes available to every Zig source file. It contains compile-time constants such as the
current target, endianness, and release mode.

const builtin = Qimport ("builtin");
const separator = if (builtin.os.tag == .windows) '\\' else

i} / i} ;
compile variables.zig

Example of what is imported with @import ("builtin"):

const std = @import ("std");

/// 7Zig version. When writing code that supports multiple
versions of Zig, prefer

/// feature detection (i.e. with ‘@hasDecl’ or ‘@hasField’)
over version checks.

pub const zig version =
std.SemanticVersion.parse(zig version string) catch
unreachable;

pub const zig version_ string = "0.11.0";

pub const zig backend =
std.builtin.CompilerBackend.stage2 x86_ 64;

pub const output mode = std.builtin.OutputMode.Obj;
pub const link mode = std.builtin.LinkMode.Static;
pub const is test = false;
pub const single threaded = false;
pub const abi = std.Target.Abi.gnu;
pub const cpu: std.Target.Cpu = . {
.arch = .x86_ 64,
.model = &std.Target.x86.cpu.znver?2,
.features = std.Target.x86.featureSet (&
[]lstd.Target.x86.Feature{
.@"64bit",
.adx,
.aes,
.allow light 256 bit,
.avx,
.avx2,
.bmi,
.bmi2,
.branchfusion,
.clflushopt,
.clwb,
.clzero,
.cmov,
NeEc32p
.cx16,
.cx8,
.fléc,
.fast_ 15bytenop,
.fast_bextr,
.fast_lzcnt,
.fast_movbe,
.fast _scalar fsqgrt,
.fast_scalar_shift masks,
.fast_variable perlane_shuffle,
.fast_vector_fsqgrt,
.fma,
.fsgsbase,
.fxsr,
.lzcnt,
.mmx,
.movbe,
.mwaitx,
.nopl,
.pclmul,
.popcnt,
.prfchw,
.rdpid,
.rdpru,
.rdrnd,
.rdseed,
.sahf,
.sbb_dep breaking,
.sha,
.slow_shld,
.sse,
.|sse?.

.ssse3,
.vzeroupper,
.wbnoinvd,
.x87,
.xsave,
.xXsavec,
.xsaveopt,
.xsaves,
1)y
}i
pub const os = std.Target.Os{

.tag = .linux,
.version_range = .{ .linux = .{
.range = .{
.min = .{
.major = 5,
.minor = 10,
.patch = 0,
b
.max = .{
.major = 5,
.minor = 10,
.patch = 0,
b
b
.glibc = .{
.major = 2,
.minor = 19,
.patch = 0,

bi
pub const target = std.Target({
.cpu = cpu,
os = os,
.abi = abi,
.ofmt = object format,
bi
pub const object format = std.Target.ObjectFormat.elf;
pub const mode = std.builtin.Mode.Debug;
pub const link libc = false;
pub const link libcpp = false;
pub const have error return tracing = true;
pub const valgrind support = true;
pub const sanitize thread = false;
pub const position independent code = false;
pub const position independent executable = false;
pub const strip debug info = false;
pub const code model = std.builtin.CodeModel.default;
pub const omit frame pointer = false;

@import("builtin")
See also:

e Build Mode

Root Source File §

TODO: explain how root source file finds other files
TODO: pub fn main

TODO: pub fn panic

TODO: if linking with libc you can use export fn main
TODO: order independent top level declarations

TODO: lazy analysis

TODO: using comptime { = @import() }

Zig Build System §

The Zig Build System provides a cross-platform, dependency-free way to declare the logic
required to build a project. With this system, the logic to build a project is written in a
build.zig file, using the Zig Build System API to declare and configure build artifacts and
other tasks.

Some examples of tasks the build system can help with:

e Creating build artifacts by executing the Zig compiler. This includes building Zig source
code as well as C and C++ source code.
Capturing user-configured options and using those options to configure the build.
Surfacing build configuration as comptime values by providing a file that can be
imported by Zig code.
Caching build artifacts to avoid unnecessarily repeating steps.
Executing build artifacts or system-installed tools.

e Running tests and verifying the output of executing a build artifact matches the
expected value.
Running zig £mt on a codebase or a subset of it.
Custom tasks.

To use the build system, run zig build --help to see a command-line usage help menu.
This will include project-specific options that were declared in the build.zig script.

Building an Executable §

This build.zig file is automatically generated by zig init-exe.
const std = @import ("std");

pub fn build(b: *std.Build) void {

// Standard target options allows the person running ‘zig
build® to choose

// what target to build for. Here we do not override the
defaults, which

// means any target is allowed, and the default is native.
Other options

// for restricting supported target set are available.

const target = b.standardTargetOptions(.{});

// Standard optimization options allow the person running
‘zig build® to select

// between Debug, ReleaseSafe, ReleaseFast, and
ReleaseSmall. Here we do not

// set a preferred release mode, allowing the user to
decide how to optimize.

const optimize = b.standardOptimizeOption(.{});

const exe = b.addExecutable (. {
.name = "example",
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
N
exe.install();

const run_cmd = exe.run();

run_cmd.step.dependOn (b.getInstallStep());

if (b.args) l|args| {
run_cmd.addArgs (args) ;

const run_step = b.step("run", "Run the app");
run_step.dependOn (&run_cmd.step) ;

}

build executable.zig

Building a Library §
This build.zig file is automatically generated by zig init-1ib.
const std = @import ("std");

pub fn build(b: *std.Build) wvoid {

const optimize = b.standardOptimizeOption(.{});

const lib = b.addStaticLibrary(.{
.name = "example",
.root_source file = .{ .path = "src/main.zig" },
.optimize = optimize,

}) i

lib.install();

const main tests = b.addTest (. {
.root_source file = .{ .path = "src/main.zig" },
.optimize = optimize,

}) i

const test step = b.step("test", "Run library tests");
test step.dependOn(&main_tests.step);
}

build_library.zig

Compiling C Source Code §

lib.addCSourceFile ("src/lib.c", &[_]I[]const u8{
"-Wall",
"-Wextra",
"-Werror",

C§

Although Zig is independent of C, and, unlike most other languages, does not depend on
libc, Zig acknowledges the importance of interacting with existing C code.

There are a few ways that Zig facilitates C interop.

C Tvpe Primitives §
These have guaranteed C ABI compatibility and can be used like any other type.

c_char
c_short
c_ushort
c_int
c_uint
c_long
c_ulong
c_longlong
c_ulonglong

c_longdouble
To interop with the C void type, use anyopaque.

See also:

e Primitive Types

Import from C Header File §

The @cImport builtin function can be used to directly import symbols from .h files:

const ¢ = @cImport ({
// See https://github.com/ziglang/zig/issues/515
@cDefine (" NO CRT STDIO INLINE", "1");
@cInclude ("stdio.h");

1)

pub fn main() void {
= c.printf("hello\n");

}

cImport_builtin.zig

$ zig build-exe cImport_builtin.zig -lc
$./cImport_builtin
hello

Shell

The ecImport function takes an expression as a parameter. This expression is evaluated at
compile-time and is used to control preprocessor directives and include multiple .h files:

const builtin = Qimport ("builtin");

const ¢ = @cImport ({
@cDefine ("NDEBUG", builtin.mode == .ReleaseFast);
if (something) {
@cDefine ("_GNU_SOURCE", {});
}
@cInclude ("stdlib.h");
if (something) {
@cUndef (" _GNU_SOURCE") ;
}
@cInclude ("soundio.h") ;
1)

@clmport Expression

See also:

@clmport
@clnclude
(@cDefine
(@cUndef

mmport

C Translation CLI §

Zig's C translation capability is available as a CLI tool via zig translate-c. It requires a
single filename as an argument. It may also take a set of optional flags that are forwarded
to clang. It writes the translated file to stdout.

Command line flags §

e -1I: Specify a search directory for include files. May be used multiple times. Equivalent
to clang's -1 flag. The current directory is not included by default; use -1. to include
it.

-D: Define a preprocessor macro. Equivalent to clang's -D flag.
-cflags [flags] --:Pass arbitrary additional command line flags to clang. Note: the
list of flags must end with --

e -—target: The target triple for the translated Zig code. If no target is specified, the
current host target will be used.

Using -target and -cflags §

Important! When translating C code with zig translate-c, you must use the same -
target triple that you will use when compiling the translated code. In addition, you must
ensure that the -cf1lags used, if any, match the cflags used by code on the target system.
Using the incorrect -target or -cflags could result in clang or Zig parse failures, or
subtle ABI incompatibilities when linking with C code.

long FOO = _ LONG_MAX _;

https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang-i-dir
https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang-d-macro
https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html

varytarget.h

$ zig translate-c -target thumb-freestanding-gnueabihf
varytarget.h|grep FOO

pub export var FOO: c_long = 2147483647;

$ zig translate-c -target x86 64-macos-gnu varytarget.h|grep
FOO

pub export var FOO: c_long = 9223372036854775807;

Shell

enum FOO { BAR };
int do_something (enum FOO foo);

varycflags.h

$ zig translate-c varycflags.h|grep -Bl do something

pub const enum FOO = c uint;

pub extern fn do_something(foo: enum FOO) c_int;

$ zig translate-c -cflags -fshort-enums -- varycflags.h|grep -
Bl do_something

pub const enum FOO = u8;

pub extern fn do_something(foo: enum FOO) c_int;

Shell

@cImport vs translate-c §

@cImport and zig translate-c use the same underlying C translation functionality, so on
a technical level they are equivalent. In practice, @cImport is useful as a way to quickly
and easily access numeric constants, typedefs, and record types without needing any extra
setup. If you need to pass cflags to clang, or if you would like to edit the translated code, it
is recommended to use zig translate-c and save the results to a file. Common reasons
for editing the generated code include: changing anytype parameters in function-like
macros to more specific types; changing [*c]T pointers to [*]T or *T pointers for
improved type safety; and enabling or disabling runtime safety within specific functions.

See also:

Targets
C Type Primitives
Pointers

C Pointers

Import from C Header File
@clnclude

@clmport
(@setRuntimeSafety

C Translation Caching §

The C translation feature (whether used via zig translate-c or @cImport) integrates
with the Zig caching system. Subsequent runs with the same source file, target, and cflags
will use the cache instead of repeatedly translating the same code.

To see where the cached files are stored when compiling code that uses @cImport, use the

--verbose-cimport flag:

const ¢ = @cImport ({
@cDefine (" NO CRT STDIO INLINE", "1");
@cInclude ("stdio.h");
})i
pub fn main() void {
= c;

}

verbose_cimport_flag.zig

$ zig build-exe verbose cimport flag.zig -lc --verbose-cimport
info (compilation): C import source: /home/ci/actions-

runner/ work/zig-bootstrap/out/zig-local-
cache/o/cb3726b36a399e0d94e4£dd382d000fe/cimport.h

info (compilation): C import .d file: /home/ci/actions-

runner/ work/zig-bootstrap/out/zig-local-
cache/o/cb3726b36a399e0d94e4£dd382d000fe/cimport.h.d

info (compilation): C import output: /home/ci/actions-

runner/ work/zig-bootstrap/out/zig-local-
cache/o/247ae563161lab677314a658db45e91da/cimport.zig

LLVM Emit Object... [20D[OKLLVM Emit Object... [20D[OKLLD
Link... [12D[0K$./verbose_cimport_ flag
Shell

cimport.h contains the file to translate (constructed from calls to @cInclude, @cDefine,
and @cUndef), cimport.h.d is the list of file dependencies, and cimport.zig contains the
translated output.

See also:

Import from C Header File
C Translation CLI
@clnclude

(@clmport

Translation failures §

Some C constructs cannot be translated to Zig - for example, goto, structs with bitfields,
and token-pasting macros. Zig employs demotion to allow translation to continue in the
face of non-translatable entities.

Demotion comes in three varieties - opaque, extern, and @compileError. C structs and
unions that cannot be translated correctly will be translated as opaque { }. Functions that
contain opaque types or code constructs that cannot be translated will be demoted to
extern declarations. Thus, non-translatable types can still be used as pointers, and non-
translatable functions can be called so long as the linker is aware of the compiled function.

@compileError is used when top-level definitions (global variables, function prototypes,
macros) cannot be translated or demoted. Since Zig uses lazy analysis for top-level
declarations, untranslatable entities will not cause a compile error in your code unless you
actually use them.

See also:

e opaque
e extern

o compileError

C Macros §

C Translation makes a best-effort attempt to translate function-like macros into equivalent
Zig functions. Since C macros operate at the level of lexical tokens, not all C macros can
be translated to Zig. Macros that cannot be translated will be demoted to @compileError.
Note that C code which uses macros will be translated without any additional issues (since
Zig operates on the pre-processed source with macros expanded). It is merely the macros
themselves which may not be translatable to Zig.

Consider the following example:

#define MAKELOCAL (NAME, INIT) int NAME = INIT
int foo(void) {

MAKELOCAL(a, 1);

MAKELOCAL (b, 2);

return a + b;

}
macro.c

$ zig translate-c macro.c > macro.zig

Shell

pub export fn foo() c_int {
var a: c_int = 1;
var b: c_int = 2;
return a + b;

}
pub const MAKELOCAL = @compileError ("unable to translate C
expr: unexpected token .Equal"); // macro.c:1:9

macro.zig

Note that foo was translated correctly despite using a non-translatable macro. MAKELOCAL
was demoted to GcompileError since it cannot be expressed as a Zig function; this simply
means that you cannot directly use MAKELOCAL from Zig.

See also:

o compileError

C Pointers §

This type is to be avoided whenever possible. The only valid reason for using a C pointer is
in auto-generated code from translating C code.

When importing C header files, it is ambiguous whether pointers should be translated as
single-item pointers (*T) or many-item pointers ([*]T). C pointers are a compromise SO
that Zig code can utilize translated header files directly.

[*c]T - C pointer.

Supports all the syntax of the other two pointer types (*T) and ([*]T).

Coerces to other pointer types, as well as Optional Pointers. When a C pointer is
coerced to a non-optional pointer, safety-checked Undefined Behavior occurs if the
address is 0.

e Allows address 0. On non-freestanding targets, dereferencing address 0 is safety-
checked Undefined Behavior. Optional C pointers introduce another bit to keep track of
null, just like ?usize. Note that creating an optional C pointer is unnecessary as one
can use normal Optional Pointers.

Supports Type Coercion to and from integers.

Supports comparison with integers.

Does not support Zig-only pointer attributes such as alignment. Use normal Pointers
please!

When a C pointer is pointing to a single struct (not an array), dereference the C pointer to
access the struct's fields or member data. That syntax looks like this:

ptr_to_struct.*.struct member
This is comparable to doing -> in C.
When a C pointer is pointing to an array of structs, the syntax reverts to this:

ptr_to_struct arraylindex].struct member

C Variadic Functions §

Zig supports extern variadic functions.

const std = @import ("std");
const testing = std.testing;

pub extern "c" fn printf (format: [*:0]const u8, ...) c_int;

test "variadic function" {
try testing.expect (printf ("Hello, world!\n") == 14);
try
testing.expect (@typelInfo (@TypeOf (printf)) .Fn.is var_ args);
}

test_variadic_function.zig

$ zig test test_variadic_function.zig -lc
1/1 test.variadic function... OK

All 1 tests passed.

Hello, world!

Shell

Variadic functions can be implemented using @c VaStart, @cVaEnd, @cVaArg and
@cVaCopy.

const std = @import ("std");
const testing = std.testing;
const builtin = @import ("builtin");

fn add(count: c_int, ...) callconv(.C) c_int {
var ap = @cVaStart();
defer @cVaEnd (&ap) ;

var i: usize = 0;
var sum: c_int = 0;
while (i < count) : (i += 1) {

sum += @cVaArg(&ap, c_int);
}
return sum;

}

test "defining a variadic function" {
// Variadic functions are currently disabled on some
targets due to miscompilations.

if (builtin.cpu.arch == .aarch64 and builtin.os.tag !=
.windows and builtin.os.tag != .macos) return
error.SkipZigTest;

if (builtin.cpu.arch == .x86 64 and builtin.os.tag ==

.windows) return error.SkipZigTest;
try std.testing.expectEqual (Gas(c_int, 0), add(0));
try std.testing.expectEqual (Gas(c_int, 1), add(l,
@as(c_int, 1)));
try std.testing.expectEqual (Gas(c_int, 3), add(2,
@as(c_int, 1), Qas(c_int, 2)));
}
test_defining_variadic_function.zig
$ zig test test defining variadic function.zig
1/1 test.defining a variadic function... OK

All 1 tests passed.

Shell

Exporting a C Library §

One of the primary use cases for Zig is exporting a library with the C ABI for other
programming languages to call into. The export keyword in front of functions, variables,
and types causes them to be part of the library API:

export fn add(a: 132, b: 132) i32 {
return a + b;
}
mathtest.zig
To make a static library:
$ zig build-lib mathtest.zig
Shell
To make a shared library:
$ zig build-1ib mathtest.zig -dynamic

Shell

Here is an example with the Zig Build System:

// This header is generated by zig from mathtest.zig
#include "mathtest.h"
#include <stdio.h>

int main(int argc, char **argv) {
int32 t result = add(42, 1337);
printf ("$d\n", result);
return 0;

}
test.c
const std = @import ("std");

pub fn build(b: *std.Build) void {
const lib = b.addSharedLibrary (. {

.name = "mathtest",
.root_source_file = .{ .path = "mathtest.zig" },
.version = .{ .major = 1, .minor = 0, .patch =0 },

1)
const exe b.addExecutable (. {
.name = "test",

1)
exe.addCSourceFile ("test.c", &[_][]lconst u8{"-std=c99"});
exe.linkLibrary (1lib);
exe.linkSystemLibrary("c");
b.default_step.dependOn (&exe.step) ;
const run_cmd = exe.run();
const test_step = b.step("test", "Test the program");
test_step.dependOn (&run_cmd.step) ;
}
build c.zig

$ zig build test
1379

Shell
See also:

e export

Mixing Object Files §

You can mix Zig object files with any other object files that respect the C ABI. Example:
const base64 = @import ("std") .base64;
export fn decode base 64 (

dest ptr: [*]u8,
dest len: usize,

source_ptr: [*]const u8,
source_len: usize,
) usize {
const src = source ptr[0..source_len];

const dest = dest ptr([0..dest len];

const base64 decoder = base64.standard.Decoder;

const decoded size = base64 decoder.calcSizeForSlice (src)
catch unreachable;

base64 decoder.decode (dest[0..decoded size], src) catch
unreachable;

return decoded size;

}

base64.zig

// This header is generated by zig from base64.zig
#include "base64.h"

#include <string.h>
#include <stdio.h>

int main(int argc, char **argv) {
const char *encoded =
"YWxsTH1vdXIgYmFzZSBhecmUgYmVsb25nIHRVIHVzZ" ;
char buf[200];

size t len =

strlen(encoded)) ;
buf[len] = 0;
puts (buf) ;

decode base 64 (buf, 200, encoded,

return 0;

}
test.c
const std = @import ("std");

pub fn build(b: *std.Build) void {
const obj = b.addObject (.{
.name = "baseb64",
.root_source_file = .{ .path = "base64.zig" },
1)

const exe = b.addExecutable (. {
.name = "test",
1)
exe.addCSourceFile ("test.c", &[_][]lconst u8{"-std=c99"});
exe.addObject (obj) ;
exe.linkSystemLibrary("c");
exe.install();

}
build object.zig
$ zig build

$./zig-out/bin/test
all your base are belong to us

Shell
See also:

e Targets
e Zig Build System

WebAssembly §

Zig supports building for WebAssembly out of the box.

Freestanding §

For host environments like the web browser and nodejs, build as a dynamic library using
the freestanding OS target. Here's an example of running Zig code compiled to
WebAssembly with nodejs.

extern fn print(i32) void;

export fn add(a: i32, b: i32) void {
print(a + b);

}

math.zig

$ zig build-lib math.zig -target wasm32-freestanding -dynamic
-rdynamic

Shell

const fs = require('fs');
const source = fs.readFileSync("./math.wasm");
const typedArray = new Uint8Array (source);

WebAssembly.instantiate (typedArray, {

env: {
print: (result) => { console.log(The result is

${result}’); }

}}) .then(result => {

const add = result.instance.exports.add;

add(1, 2);
1)
test.js

$ node test.js
The result is 3

Shell

WASI §
Zig's support for WebAssembly System Interface (WASI) is under active development.
Example of using the standard library and reading command line arguments:
const std = @import ("std");
pub fn main() !void {
var general purpose allocator =
std.heap.GeneralPurposeAllocator(.{}) {};
const gpa = general purpose allocator.allocator();
const args = try std.process.argsAlloc(gpa);

defer std.process.argsFree(gpa, args);

for (args, 0..) larg, i| {
std.debug.print ("{}: {s}\n", .{ i, arg });

}
wasi_args.zig

$ zig build-exe wasi args.zig -target wasm32-wasi

$ wasmtime wasi args.wasm 123 hello
0: wasi args.wasm

1: 123
2: hello

Shell

A more interesting example would be extracting the list of preopens from the runtime. This
is now supported in the standard library via std. fs.wasi.PreopenList:

const std = @import ("std");
const fs = std.fs;

pub fn main() !void {
var general purpose_allocator =
std.heap.GeneralPurposeAllocator (.{}) {};
const gpa = general purpose_allocator.allocator();
var arena_instance = std.heap.ArenaAllocator.init (gpa);
defer arena_instance.deinit();
const arena = arena_instance.allocator();

const preopens = try fs.wasi.preopensAlloc(arena);

for (preopens.names, 0..) |preopen, il {
std.debug.print ("{}: {s}\n", .{ i, preopen });

}
wasi_preopens.zig

S zig build-exe wasi preopens.zig -target wasm32-wasi

Shell

S wasmtime --dir=. wasi_preopens.wasm
0: stdin

1: stdout

2: stderr

3

Shell

Targets §

Zig supports generating code for all targets that LLVM supports
to execute zig targets on a Linux x86_64 computer:

$ zig targets
Architectures:
arm
v8_ 4da
v8_ 3a
v8_ 2a
v8_ la
v8
v8r
v8m_ baseline
v8m mainline
v7
v7em
v7m
vTs
vk
vTve
v6
vém
vék
vet2
v5
vbte
vat
armeb
v8_4a
v8 3a
v8_2a
v8_la
v8
v8r
v8m_baseline
v8m mainline
v7
viem
v7m
vTs
vTk
vive
v6
vém
voék
vet2
v5
vbte
vt
aarch64
v8_4a
v8_3a
v8_2a
v8_la
v8
v8r
v8m_baseline
v8m_mainline
aarch64_be
v8_4da
v8_3a
v8_2a
v8_1la
v8

~rQ

. Here is what it looks like

v8m_baseline

v8m_mainline
avr
bpfel
bpfeb
hexagon
mips
mipsel
mips64
mips64el
msp430
powerpc
powerpc64
powerpc6dle
r600
amdgcn
riscv32
riscv64
sparc
sparc64
sparcel
s390x
thumb

v8 4da

v8 3a

v8 2a

v8 la

v8

v8r

v8m_ baseline

v8m mainline

v7

v7em

v7m

v7s

vTk

vive

V6

vém

voék

vet2

v5

vbte

vat
thumbeb

v8_4a

v8 3a

v8_2a

v8_la

v8

v8r

v8m baseline

v8m mainline

v7

v7em

v7m

vTs

vk

vive

v6

vém

voék

vot2

v5

vbte

vt
%86
x86_64 (native)
xcore
nvptx
nvptx64
lanai
wasm32
wasmé64

Operating Systems:
freestanding
ananas
cloudabi

dragonfly
freebsd
fuchsia
ios
kfreebsd
linux (native)
1v2
macos
netbsd
openbsd
solaris
windows
haiku
minix
rtems
nacl

cnk

aix

cuda
nvcl
amdhsa
ps4
elfiamcu
tvos
wasi
watchos
mesa3d
contiki
amdpal
zen

uefi

C ABIs:
none
gnu (native)
gnuabin32
gnuabi64
gnueabi
gnueabihf
gnux32
codelé6
eabi
eabihf
android
musl
musleabi
musleabihf
msvc
itanium
cygnus
coreclr
simulator

Available libcs:
aarch64_be-linux-gnu
aarch64 be-linux-musl
aarch64-linux-gnu
aarch64-linux-musleabi
armeb-linux-gnueabi
armeb-linux-gnueabihf
armeb-linux-musleabi
armeb-linux-musleabihf
arm-linux-gnueabi
arm-linux-gnueabihf
arm-linux-musleabi
arm-linux-musleabihf
x86-linux-gnu
x86-linux-musl
mips64el-linux-gnuabi64
mips64el-linux-gnuabin32
mips64el-linux-musl
mips64-linux-gnuabi6cd
mips64-linux-gnuabin32
mips64-linux-musl
mipsel-linux-gnu
mipsel-linux-musl
mips-linux-gnu
mips-linux-musl
nios2-linux-gnu

powerpc64le-linux-gnu
powerpc64le-linux-musl
powerpc64-linux—-gnu
powerpc64-linux-musl
powerpc-linux-gnu
powerpc-linux-musl
riscv32-linux-musl
riscvé64-linux-gnu
riscv64-linux-musl
s390x-1linux—-gnu
s390x-linux-musl
sparc-linux—-gnu
sparc64-linux-gnu
wasm32-freestanding-musl
wasm32-wasi-musl
x86_64-linux-gnu
x86_64-linux-gnux32
x86_64-linux-musl

Shell

The Zig Standard Library (eimport ("std")) has architecture, environment, and operating
system abstractions, and thus takes additional work to support more platforms. Not all
standard library code requires operating system abstractions, however, so things such as
generic data structures work on all above platforms.

The current list of targets supported by the Zig Standard Library is:

e Linux x86_64
e Windows x86 64
e macOS x86_64

Style Guide §

These coding conventions are not enforced by the compiler, but they are shipped in this
documentation along with the compiler in order to provide a point of reference, should
anyone wish to point to an authority on agreed upon Zig coding style.

Whitespace §

4 space indentation
Open braces on same line, unless you need to wrap.
If a list of things is longer than 2, put each item on its own line and exercise the ability
to put an extra comma at the end.
e Line length: aim for 100; use common sense.

Names §

Roughly speaking: camelCaseFunctionName, TitleCaseTypeName,
snake case variable name. More precisely:

e If xis a type then x should be TitleCase, unless it is a struct with 0 fields and is
never meant to be instantiated, in which case it is considered to be a "namespace" and
uses snake case.

If x is callable, and x's return type is type, then x should be Titlecase.
If % is otherwise callable, then x should be camelcase.
e Otherwise, x should be snake case.

Acronyms, initialisms, proper nouns, or any other word that has capitalization rules in
written English are subject to naming conventions just like any other word. Even acronyms
that are only 2 letters long are subject to these conventions.

File names fall into two categories: types and namespaces. If the file (implicitly a struct)
has top level fields, it should be named like any other struct with fields using Titlecase.
Otherwise, it should use snake case. Directory names should be snake case.

These are general rules of thumb; if it makes sense to do something different, do what

makes sense. For example, if there is an established convention such as ENOENT, follow the
established convention.

Examples §

const namespace_name = @import ("dir name/file name.zig");
const TypeName = @import("dir name/TypeName.zig");

var global var: i32 = undefined;

const const_name = 42;

const primitive type alias = £32;

const string alias = []u8;

const StructName = struct {
field: i32,
}i

const StructAlias = StructName;

fn functionName (param name: TypeName) void {

var functionPointer = functionName;
functionPointer () ;
functionPointer otherFunction;

functionPointer () ;

}

const functionAlias = functionName;

fn ListTemplateFunction (comptime ChildType: type, comptime
fixed size: usize) type {

return List (ChildType, fixed size);
}

fn ShortlList (comptime T: type, comptime n: usize) type {
return struct {
field name: [n]T,
fn methodName () void {}
bi
}

// The word XML loses its casing when used in Zig identifiers.
const xml document =
\\<?xml version="1.0" encoding="UTF-8"?>
\\<document>
\\</document>
const XmlParser = struct {
field: 132,
bi

// The initials BE (Big Endian) are just another word in Zig
identifier names.
fn readU32Be() u32 {}

style_example.zig

See the Zig Standard Library for more examples.

Doc Comment Guidance §

e Omit any information that is redundant based on the name of the thing being
documented.

e Duplicating information onto multiple similar functions is encouraged because it helps
IDEs and other tools provide better help text.

e Use the word assume to indicate invariants that cause Undefined Behavior when
violated.

e Use the word assert to indicate invariants that cause safety-checked Undefined
Behavior when violated.

Source Encoding §

Zig source code is encoded in UTF-8. An invalid UTF-8 byte sequence results in a compile
errofr.

Throughout all zig source code (including in comments), some code points are never
allowed:

e Ascii control characters, except for U+000a (LF), U+000d (CR), and U+0009 (HT):
U+0000 - U+0008, U+000b - U+000c, U+000e - U+0001f, U+007f.
e Non-Ascii Unicode line endings: U+0085 (NEL), U+2028 (LS), U+2029 (PS).

LF (byte value 0x0a, code point U+000a, '\n") is the line terminator in Zig source code.
This byte value terminates every line of zig source code except the last line of the file. It is
recommended that non-empty source files end with an empty line, which means the last
byte would be 0x0a (LF).

Each LF may be immediately preceded by a single CR (byte value 0x0d, code point
U+000d, '\r") to form a Windows style line ending, but this is discouraged. Note that in
mulitline strings, CRLF sequences will be encoded as LF when compiled into a zig
program. A CR in any other context is not allowed.

HT hard tabs (byte value 0x09, code point U+0009, '\t ') are interchangeable with SP
spaces (byte value 0x20, code point U+0020, * ') as a token separator, but use of hard
tabs is discouraged. See Grammar.

For compatibility with other tools, the compiler ignores a UTF-8-encoded byte order mark
(U+FEFF) if it is the first Unicode code point in the source text. A byte order mark is not
allowed anywhere else in the source.

Note that running zig fmt on a source file will implement all recommendations mentioned
here.

Note that a tool reading Zig source code can make assumptions if the source code is
assumed to be correct Zig code. For example, when identifying the ends of lines, a tool can
use a naive search such as /\n/, or an advanced search such as /\r\n? |
[\n\u0085\u2028\u2029]/, and in either case line endings will be correctly identified. For
another example, when identifying the whitespace before the first token on a line, a tool
can either use a naive search such as /[\t]/, or an advanced search such as /\s/, and in
either case whitespace will be correctly identified.

Keyword Reference §

Keywords

Keyword Description

The addrspace keyword.

addrspace e TODO add documentation for
addrspace

align can be used to specify the alignment
of a pointer. It can also be used after a
variable or function declaration to specify
the alignment of pointers to that variable or

align .

function.
e See also Alignment

The pointer attribute allowzero allows a

pointer to have address zero.

allowzero

e Sece also allowzero

The boolean operator and.

and

e See also Operators

anyframe can be used as a type for
variables which hold pointers to function

_ framec

https://msdn.microsoft.com/en-us/library/dd409797.aspx
https://tc39.es/ecma262/#sec-characterclassescape

anyrrame
Keéyword

Description

anytype

asm

async

await

break

catch

comptime

const

continue

e Sce also Async Functions

Function parameters can be declared with
anytype in place of the type. The type will
be inferred where the function is called.

e See also Function Parameter Type
Inference

asm begins an inline assembly expression.
This allows for directly controlling the
machine code generated on compilation.

e See also Assembly

async can be used before a function call to
get a pointer to the function's frame when
it suspends.

e See also Async Functions

await can be used to suspend the current
function until the frame provided after the
await completes. await copies the value
returned from the target function's frame
to the caller.

e See also Async Functions

break can be used with a block label to
return a value from the block. It can also
be used to exit a loop before iteration
completes naturally.

e See also Blocks, while, for

catch can be used to evaluate an
expression if the expression before it
evaluates to an error. The expression after
the catch can optionally capture the error
value.

e See also catch, Operators

comptime before a declaration can be used
to label variables or function parameters as
known at compile time. It can also be used
to guarantee an expression is run at
compile time.

e See also comptime

const declares a variable that can not be
modified. Used as a pointer attribute, it
denotes the value referenced by the pointer
cannot be modified.

e See also Mariables

continue can be used in a loop to jump
back to the beginning of the loop.

e See also while, for

defer will execute an expression when

Keypord

control flow leaﬁféss é@ﬁ)fﬂ)rﬂent block.

else

enum

errdefer

error

export

extern

fn

for

if

o See also defer

else can be used to provide an alternate
branch for if, switch, while, and for
expressions.

e If used after an if expression, the else
branch will be executed if the test
value returns false, null, or an error.

e If used within a switch expression, the
else branch will be executed if the test
value matches no other cases.

e If used after a loop expression, the
else branch will be executed if the loop
finishes without breaking.

e See also if, switch, while, for

enum defines an enum type.

e See also enum

errdefer will execute an expression when
control flow leaves the current block if the
function returns an error, the errdefer
expression can capture the unwrapped
value.

e See also errdefer

error defines an error type.

e See also Errors

export makes a function or variable
externally visible in the generated object
file. Exported functions default to the C
calling convention.

e See also Functions

extern can be used to declare a function
or variable that will be resolved at link
time, when linking statically or at runtime,
when linking dynamically.

e Sece also Functions
fn declares a function.

e Sece also Functions

A for expression can be used to iterate
over the elements of a slice, array, or tuple.

e See also for

An if expression can test boolean
expressions, optional values, or error
unions. For optional values or error unions,
the if expression can capture the
unwrapped value.

e See also if

inlinA can ha ncad ta lahal a lnan

Keyword

i
expression sucHP@SEHPGMbe unrolled at

inline

linksection

noalias

noinline

nosuspend

or

orelse

packed

pub

compile time. It can also be used to force a
function to be inlined at all call sites.

e See also inline while, inline for,
Functions

The linksection keyword.

e TODO add documentation for
linksection

The noalias keyword.

e TODO add documentation for noalias

noinline disallows function to be inlined
in all call sites.

e Sece also Functions

The nosuspend keyword can be used in
front of a block, statement or expression,
to mark a scope where no suspension
points are reached. In particular, inside a
nosuspend SCOpE:

e Using the suspend keyword results in
a compile error.

e Using await on a function frame
which hasn't completed yet results in
safety-checked Undefined Behavior.

e Calling an async function may result in
safety-checked Undefined Behavior,
because it's equivalent to await async
some_async_fn (), which contains an

await.

Code inside a nosuspend scope does not
cause the enclosing function to become an

async function.
e See also Async Functions
The boolean operator or.

e See also Operators

orelse can be used to evaluate an
expression if the expression before it
evaluates to null.

e See also Optionals, Operators

The packed keyword before a struct
definition changes the struct's in-memory
layout to the guaranteed packed layout.

e See also packed struct

The pub in front of a top level declaration
makes the declaration available to reference
from a different file than the one it is
declared in.

e See also import

T 3
RTYWoru

. escription .
resime will cantene tRaomion of a

resume

return

struct

suspend

switch

test

threadlocal

try

union

unreachable

usingnamespace

function frame after the point the function
was suspended.

return exits a function with a value.

e See also Functions

struct defines a struct.

e See also struct

suspend will cause control flow to return
to the call site or resumer of the function.
suspend can also be used before a block
within a function, to allow the function
access to its frame before control flow
returns to the call site.

A switch expression can be used to test
values of a common type. switch cases
can capture field values of a Tagged union.

e See also switch

The test keyword can be used to denote a
top-level block of code used to make sure
behavior meets expectations.

e See also Zig Test

threadlocal can be used to specify a
variable as thread-local.

e Sece also Thread Local Variables

try evaluates an error union expression. If
it is an error, it returns from the current
function with the same error. Otherwise,
the expression results in the unwrapped
value.

e See also try

union defines a union.

e See also union

unreachable can be used to assert that
control flow will never happen upon a
particular location. Depending on the build
mode, unreachable may emit a panic.

e Emits a panic in Debug and
ReleaseSafe mode, or when using
zig test.

e Does not emit a panic in ReleaseFast
and ReleaseSmall mode.

e See also unreachable

usingnamespace is a top-level declaration
that imports all the public declarations of
the operand, which must be a struct,
union, or enum, into the current scope.

e See also usingnamespace

Keyword 7= e & o °
var
e See also Mariables
volatile can be used to denote loads or
stores of a pointer have side effects. It can
also modify an inline assembly expression
volatile to denote it has side effects.
e See also volatile, Assembly
A while expression can be used to
repeatedly test a boolean, optional, or error
union expression, and cease looping when
while that expression evaluates to false, null, or

an error, respectively.

o See also while

Appendix §

Containers §

A container in Zig is any syntactical construct that acts as a namespace to hold variable
and function declarations. Containers are also type definitions which can be instantiated.
Structs, enums, unions, opaques, and even Zig source files themselves are containers.

Although containers (except Zig source files) use curly braces to surround their definition,
they should not be confused with blocks or functions. Containers do not contain
statements.

Grammar §
Root <- skip container doc_comment? ContainerMembers eof

*** Top level ***
ContainerMembers <- ContainerDeclarations (ContainerField
COMMA) * (ContainerField / ContainerDeclarations)

ContainerDeclarations
<- TestDecl ContainerDeclarations
/ ComptimeDecl ContainerDeclarations
/ doc_comment? KEYWORD pub? Decl ContainerDeclarations

/

TestDecl <- KEYWORD test (STRINGLITERALSINGLE / IDENTIFIER)?
Block

ComptimeDecl <- KEYWORD comptime Block

Decl
<- (KEYWORD_ export / KEYWORD_ extern STRINGLITERALSINGLE?
/ (KEYWORD_ inline / KEYWORD noinline))? FnProto (SEMICOLON /
Block)
/ (KEYWORD export / KEYWORD extern
STRINGLITERALSINGLE?)? KEYWORD threadlocal? VarDecl
/ KEYWORD usingnamespace Expr SEMICOLON

FnProto <- KEYWORD fn IDENTIFIER? LPAREN ParamDeclList RPAREN
ByteAlign? AddrSpace? LinkSection? CallConv? EXCLAMATIONMARK?
TypeExpr

VarDecl <- (KEYWORD const / KEYWORD var) IDENTIFIER (COLON
TypeExpr) ? ByteAlign? AddrSpace? LinkSection? (EQUAL Expr)?
SEMICOLON

ContainerField
<- doc comment? KEYWORD comptime? IDENTIFIER (COLON

TypeExpr) ? ByteAlign? (EQUAL Expr)?
/ doc comment? KEYWORD comptime? (IDENTIFIER COLON)?
!KEYWORD fn TypeExpr ByteAlign? (EQUAL Expr)?

*** Block Level ***

Statement

KEYWORD_comptime? VarDecl

KEYWORD_ comptime BlockExprStatement
KEYWORD_nosuspend BlockExprStatement
KEYWORD_suspend BlockExprStatement
KEYWORD_defer BlockExprStatement
KEYWORD_errdefer Payload? BlockExprStatement
IfStatement

LabeledStatement

SwitchExpr

AssignExpr SEMICOLON

A
I

N N N N

IfStatement
<- IfPrefix BlockExpr (KEYWORD else Payload? Statement
)?
/ IfPrefix AssignExpr (SEMICOLON / KEYWORD_else
Payload? Statement)

LabeledStatement <- BlockLabel? (Block / LoopStatement)

LoopStatement <- KEYWORD_inline? (ForStatement /
WhileStatement)

ForStatement
<- ForPrefix BlockExpr (KEYWORD else Statement)?
/ ForPrefix AssignExpr (SEMICOLON / KEYWORD else
Statement)

WhileStatement
<- WhilePrefix BlockExpr (KEYWORD_ else Payload? Statement
)?
/ WhilePrefix AssignExpr (SEMICOLON / KEYWORD_ else
Payload? Statement)

BlockExprStatement
<- BlockExpr
/ AssignExpr SEMICOLON

BlockExpr <- BlockLabel? Block

*** Expression Level **x*
AssignExpr <- Expr (AssignOp Expr)?

Expr <- BoolOrExpr

BoolOrExpr <- BoolAndExpr (KEYWORD or BoolAndExpr) *
BoolAndExpr <- CompareExpr (KEYWORD and CompareExpr)*
CompareExpr <- BitwiseExpr (CompareOp BitwiseExpr) ?
BitwiseExpr <- BitShiftExpr (BitwiseOp BitShiftExpr) *
BitShiftExpr <- AdditionExpr (BitShiftOp AdditionExpr)*
AdditionExpr <- MultiplyExpr (AdditionOp MultiplyExpr) *
MultiplyExpr <- PrefixExpr (MultiplyOp PrefixExpr)*
PrefixExpr <- PrefixOp* PrimaryExpr

PrimaryExpr

<- AsmExpr
IfExpr
KEYWORD break BreakLabel? Expr?
KEYWORD comptime Expr
KEYWORD nosuspend Expr
KEYWORD continue BreakLabel?
KEYWORD_ resume Expr
KEYWORD return Expr?
BlockLabel? LoopExpr
Block
CurlySuffixExpr

N N N Y

lrkxpr <- lrfPrerix kxpr (KEYWORD else Payload? kEXpr)?
Block <- LBRACE Statement* RBRACE

LoopExpr <- KEYWORD inline? (ForExpr / WhileExpr)

ForExpr <- ForPrefix Expr (KEYWORD else Expr)?

WhileExpr <- WhilePrefix Expr (KEYWORD else Payload? Expr)?
CurlySuffixExpr <- TypeExpr InitList?

InitList
<- LBRACE FieldInit (COMMA FieldInit)* COMMA? RBRACE
/ LBRACE Expr (COMMA Expr)* COMMA? RBRACE
/ LBRACE RBRACE

TypeExpr <- PrefixTypeOp* ErrorUnionExpr
ErrorUnionExpr <- SuffixExpr (EXCLAMATIONMARK TypeExpr) ?

SuffixExpr
<- KEYWORD_async PrimaryTypeExpr SuffixOp* FnCallArguments
/ PrimaryTypeExpr (SuffixOp / FnCallArguments) *

PrimaryTypeExpr
<- BUILTINIDENTIFIER FnCallArguments
CHAR LITERAL
ContainerDecl
DOT IDENTIFIER
DOT InitList
ErrorSetDecl
FLOAT
FnProto
GroupedExpr
LabeledTypeExpr
IDENTIFIER
IfTypeExpr
INTEGER
KEYWORD_ comptime TypeExpr
KEYWORD_error DOT IDENTIFIER
KEYWORD_anyframe
KEYWORD_unreachable
STRINGLITERAL
SwitchExpr

N N N

ContainerDecl <- (KEYWORD extern / KEYWORD packed)?
ContainerDeclAuto

ErrorSetDecl <- KEYWORD error LBRACE IdentifierList RBRACE
GroupedExpr <- LPAREN Expr RPAREN

IfTypeExpr <- IfPrefix TypeExpr (KEYWORD else Payload?
TypeExpr) ?

LabeledTypeExpr
<- BlockLabel Block
/ BlockLabel? LoopTypeExpr
LoopTypeExpr <- KEYWORD inline? (ForTypeExpr / WhileTypeExpr)

ForTypeExpr <- ForPrefix TypeExpr (KEYWORD else TypeExpr)?

WhileTypeExpr <- WhilePrefix TypeExpr (KEYWORD else Payload?
TypeExpr) ?

SwitchExpr <- KEYWORD switch LPAREN Expr RPAREN LBRACE
SwitchProngList RBRACE

*** Assembly ***
AsmExpr <- KEYWORD asm KEYWORD volatile? LPAREN Expr
AsmOutput? RPAREN

AsmOutput <- COLON AsmOutputList AsmInput?

AsmOutputItem <- LBRACKET IDENTIFIER RBRACKET STRINGLITERAL
LPAREN (MINUSRARROW TypeExpr / IDENTIFIER) RPAREN

DamTnrnnt <— COTNON DemTnrntT.di et DemC1nhharae?

PIURTIRTTOIVIUEEN U U Y LAULA LI U L LD U £k U e .

AsmInputItem <- LBRACKET IDENTIFIER RBRACKET STRINGLITERAL
LPAREN Expr RPAREN

AsmClobbers <- COLON StringList

*** Helper grammar ***
BreakLabel <- COLON IDENTIFIER

BlockLabel <- IDENTIFIER COLON

FieldInit <- DOT IDENTIFIER EQUAL Expr
WhileContinueExpr <- COLON LPAREN AssignExpr RPAREN
LinkSection <- KEYWORD_ linksection LPAREN Expr RPAREN
AddrSpace <- KEYWORD_ addrspace LPAREN Expr RPAREN

Fn specific
CallConv <- KEYWORD_ callconv LPAREN Expr RPAREN

ParamDecl

<- doc_comment? (KEYWORD noalias / KEYWORD comptime) ?
(IDENTIFIER COLON)? ParamType

/ DOT3

ParamType
<- KEYWORD_anytype
/ TypeExpr

Control flow prefixes
IfPrefix <- KEYWORD if LPAREN Expr RPAREN PtrPayload?

WhilePrefix <- KEYWORD while LPAREN Expr RPAREN PtrPayload?
WhileContinueExpr?

ForPrefix <- KEYWORD_ for LPAREN Expr RPAREN PtrIndexPayload

Payloads
Payload <- PIPE IDENTIFIER PIPE

PtrPayload <- PIPE ASTERISK? IDENTIFIER PIPE

PtrIndexPayload <- PIPE ASTERISK? IDENTIFIER (COMMA
IDENTIFIER)? PIPE

Switch specific
SwitchProng <- KEYWORD inline? SwitchCase EQUALRARROW
PtrIndexPayload? AssignExpr

SwitchCase
<- SwitchItem (COMMA SwitchItem)* COMMA?
/ KEYWORD_else

SwitchItem <- Expr (DOT3 Expr)?

Operators
AssignOp

<- ASTERISKEQUAL
ASTERISKPIPEEQUAL
SLASHEQUAL
PERCENTEQUAL
PLUSEQUAL
PLUSPIPEEQUAL
MINUSEQUAL
MINUSPIPEEQUAL
LARROW2EQUAL
LARROW2PIPEEQUAL
RARROW2EQUAL
AMPERSANDEQUAL
CARETEQUAL
PIPEEQUAL
ASTERISKPERCENTEQUAL
PLUSPERCENTEQUAL
MINUSPERCENTEQUAL
EQUAL

N N N T N

CompareOp

<- EQUALEQUAL
EXCLAMATIONMARKEQUAL
LARROW
RARROW
LARROWEQUAL
RARROWEQUAL

NN N N

BitwiseOp
<- AMPERSAND
/ CARET
/ PIPE
/ KEYWORD_ orelse
/ KEYWORD_ catch Payload?

BitShiftOp
<- LARROW2
/ RARROW2
/ LARROW2PIPE

AdditionOp

<- PLUS
MINUS
PLUS2
PLUSPERCENT
MINUSPERCENT
PLUSPIPE
MINUSPIPE

NN N N N

MultiplyOp

<- PIPE2

/ ASTERISK

SLASH
PERCENT
ASTERISK2
ASTERISKPERCENT
ASTERISKPIPE

NN N N

PrefixOp

<- EXCLAMATIONMARK
MINUS
TILDE
MINUSPERCENT
AMPERSAND
KEYWORD_try
KEYWORD_await

NN N N N

PrefixTypeOp
<- QUESTIONMARK

/ KEYWORD_anyframe MINUSRARROW

/ SliceTypeStart (ByteAlign / AddrSpace / KEYWORD const /
KEYWORD_volatile / KEYWORD_allowzero)*

/ PtrTypeStart (AddrSpace / KEYWORD align LPAREN Expr
(COLON Expr COLON Expr)? RPAREN / KEYWORD_const /
KEYWORD volatile / KEYWORD_allowzero)*

/ ArrayTypeStart

SuffixOp
<- LBRACKET Expr (DOT2 (Expr? (COLON Expr)?)?)? RBRACKET
/ DOT IDENTIFIER
/ DOTASTERISK
/ DOTQUESTIONMARK

FnCallArguments <- LPAREN ExprList RPAREN

Ptr specific
SliceTypeStart <- LBRACKET (COLON Expr)? RBRACKET

PtrTypeStart
<- ASTERISK
/ ASTERISK2
/ LBRACKET ASTERISK (LETTERC / COLON Expr)? RBRACKET

ArrayTypeStart <- LBRACKET Expr (COLON Expr)? RBRACKET
ContainerDecl specific

ContainerDeclAuto <- ContainerDeclType LBRACE
container doc comment? ContainerMembers RBRACE

ContainerDeclType

<- KEYWORD_ struct

/ KEYWORD opaque

/ KEYWORD enum
/ KEYWORD union

RPAREN) ? / Expr)

Alignment

ByteAlign <- KEYWORD align LPAREN Expr RPAREN

Lists

IdentifierList <-

(LPAREN
RPAREN) ?

(doc_comment? IDENTIFIER)?

SwitchPronglList <-

AsmOutputList <-
AsmInputList <-

StringlList <-
ParamDeclList <-
ExprList <-

*** Tokens ***
eof <- 1I.

(LPAREN Expr RPAREN) ?

(LPAREN Expr RPAREN) ?
(KEYWORD _enum

(LPAREN Expr

(doc_comment? IDENTIFIER COMMA) *

(SwitchProng COMMA) * SwitchProng?

(AsmOutputItem COMMA)* AsmOutputItem?

(ParamDecl COMMA)* ParamDecl?

(Expr COMMA) * Expr?

bin <- [01]

bin <- ' '? bin
oct <- [0-7]

oct_ <- ' '? oct
hex <- [0-9a-fA-F]
hex <- ' '? hex
dec <- [0-9]

dec_ <- '_'? dec

bin int <- bin bin *
oct_int <- oct oct_ *
dec_int <- dec dec_*
hex_int <- hex hex *

ox80_oxBF <- [\200-\277]
oxF4 <- '\364"'
ox80_ox8F <- [\200-\217]
oxF1l_ oxF3 <- [\361-\363]
oxF0 <- "\360'
0ox90_0xBF <- [\220-\277]
oxEE_OoxEF <- [\356-\357]
oxED <- "\355'
ox80_ox9F <- [\200-\237]
oxEl_oxEC <- [\341-\354]
oxE0 <- '"\340'
oxAQ oxBF <- [\240-\277]
oxC2_oxDF <- [\302-\337]

(AsmInputItem COMMA)* AsmInputItem?

(STRINGLITERAL COMMA)* STRINGLITERAL?

From https://lemire.me/blog/2018/05/09/how-quickly-can-you-
check-that-a-string-is-valid-unicode-utf-8/

First Byte Second Byte Third Byte
[0x00,0x7F]
[0xC2,0xDF] [0x80, 0xBF]
0xEQ [0xA0, 0xBF] [0x80, 0xBF]
[0xE1l, O0xEC] [0x80, 0xBF] [0x80, 0xBF]
0xED [0x80, 0x9F] [0x80, 0xBF]
[0xXEE, OXEF] [0x80, 0xBF] [0x80, 0xBF]
0xFO0 [0x90, 0xBF] [0x80, 0xBF]
[0xF1,0xF3] [0x80, 0xBF] [0x80, 0xBF]
0xF4 [0x80, 0x8F] [0x80, 0xBF]
mb utf8 literal <-
oxF4 ox80 ox8F ox80 oxBF ox80 oxBF
/ oxF1l oxF3 ox80 oxBF ox80 oxBF ox80 oxBF
/ oxF0 0ox90 OxBF 0ox80 oxBF ox80 oxBF
/ OxXEE OxEF 0x80 oxBF 0ox80 oxBF
/ oxED 0x80_ox9F ox80_oxBF
/ oxEl oxEC o0x80 oxBF 0ox80 oxBF
/ oxE0 oxA0 oxBF ox80 oxBF
/ 0xC2_ oxDF 0x80 oxBF

Fourth Byte

[0x80, 0xBF]
[0x80, 0xBF]
[0x80, 0xBF]

rNANA \N11\N12 \nac \nEn

dASCLL_ Cldl _LOL_ 1L SidSll SYuule ST [\WUUT\ULL\ULOT\U40T \UoU~

\133\135-\177]

char escape
<- "\\x" hex hex
/ "\\u{" hex+ "}"
/ "\A" [nr\\e'"
char char
<- mb utf8 literal
/ char escape
/ ascii char not nl slash squote

string char
<- char_escape

/ ["\\"\n]
container_doc_comment <- ('//!' [*\n]* [\nl* skip)+
doc_comment <- ('///' ["\nl* [\nl* skip)+
line_comment <- '//' !'[!/1["\nl* / '////' ["\n]l*

]
line string <- (™\\\\" ["\n]* [\nl*)+
skip <- ([\n] / line_ comment)*

CHAR_LITERAL <- "'" char char "'" skip

FLOAT
<- "0x" hex int "." hex int ([pP] [-+]? dec_int)? skip
/ dec_int "." dec_int ([eE] [-+]? dec_int)? skip
/AR hex int [pP] [-+]? dec_int skip
/ dec_int [eE] [-+]? dec_int skip

INTEGER

<- "Ob" bin_ int skip

/ "0o" oct_int skip

/ "0x" hex_int skip

/ dec_int skip
STRINGLITERALSINGLE <- "\"" String_char* "\"" skip
STRINGLITERAL

<- STRINGLITERALSINGLE

/ (line_string skip) +
IDENTIFIER
<- l!keyword [A-Za-z_] [A-Za-z0-9_]* skip
/ "@\"" string_char* "\"" skip

BUILTINIDENTIFIER <- "Q"[A-Za-z_][A-Za-z0-9_]* skip

AMPERSAND <- '&! =] skip
AMPERSANDEQUAL <- 'g&=' skip
ASTERISK L= Ul Ti*s=11] skip
ASTERISK2 L= Uverd skip
ASTERISKEQUAL <= tx=! skip
ASTERISKPERCENT <= xRy =] skip
ASTERISKPERCENTEQUAL <- '*%="' skip
ASTERISKPIPE K= U] U =] skip
ASTERISKPIPEEQUAL <= 'x|=" skip
CARET <= AU =] skip
CARETEQUAL <= 'h=t skip
COLON L= Vgl skip
COMMA K= VU skip
DOT SR 1[*.21 skip
DOT2 SR 1.1 skip
DOT3 Ko U550 skip
DOTASTERISK Ko U &l skip
DOTQUESTIONMARK Lo U, U skip
EQUAL <= '=! H[>=] skip
EQUALEQUAL <= == skip
EQUALRARROW <= '=>! skip
EXCLAMATIONMARK <- ' 1 [=] skip
EXCLAMATIONMARKEQUAL <- '!=' skip
LARROW = IgQU [<=] skip
LARROW2 <= 't =] skip
LARROW2EQUAL <= <=t skip
LARROW2PIPE <- << | 1[=] skip
LARROW2PIPEEQUAL <= <<= skip
LARROWEQUAL <= <= skip
LBRACE <= '{' skip
LBRACKET <-'[skip
LPAREN <= ' skip
MINUS L= U0 T%s=>]] skip
MINUSEQUAL <- '-=! skip
MINUSPERCENT <- -y 1[=] skip
MINUSPERCENTEQUAL <= '-%=" skip

MINUSPIPE <o Ul =1 skio

MINUSPIPEEQUAL <= '-|= skip

| =

MINUSRARROW L= VU skip
PERCENT <- 'y 1[=] skip
PERCENTEQUAL <- '&=" skip
PIPE K= V[V '[=] skip
PIPE2 <= "] skip
PIPEEQUAL <=)= skip
PLUS <= 4! V[$+=11] skip
PLUS2 <= T+ skip
PLUSEQUAL <- '+=' skip
PLUSPERCENT <- T+t 1=] skip
PLUSPERCENTEQUAL <= '+%=! skip
PLUSPIPE <-4 1[=] skip
PLUSPIPEEQUAL <= '+|="' skip
LETTERC <= Vgl skip
QUESTIONMARK <= '?! skip
RARROW <— >0 1 [>=] skip
RARROW2 <= >0 =] skip
RARROW2EQUAL <= '>>=' skip
RARROWEQUAL <= '>=' skip
RBRACE <= '}! skip
RBRACKET <= Uju skip
RPAREN <- "y skip
SEMICOLON <= Ugt skip
SLASH <— 1/ 1[=] skip
SLASHEQUAL <= '/= skip
TILDE L= Ul skip
end of word <- ![a-zA-Z0-9_] skip
KEYWORD_addrspace <- 'addrspace' end_of word
KEYWORD align <- 'align' end_of word
KEYWORD_allowzero <- 'allowzero' end_of word
KEYWORD_and <- 'and' end_of word
KEYWORD_anyframe <- 'anyframe' end_of word
KEYWORD_anytype <- 'anytype' end_of word
KEYWORD_asm <- 'asm' end_of word
KEYWORD_async <- 'async' end_of word
KEYWORD await <- 'await' end of word
KEYWORD_break <- 'break' end_of word
KEYWORD_callconv <- 'callconv' end_of word
KEYWORD_catch <- 'catch' end_of word
KEYWORD_comptime <- 'comptime' end_of word
KEYWORD_const <- 'const' end_of word
KEYWORD continue <- 'continue' end of word
KEYWORD_defer <- 'defer' end_of word
KEYWORD_else <- 'else' end_of word
KEYWORD_enum <- 'enum' end_of word
KEYWORD_errdefer <- 'errdefer' end_of word
KEYWORD_error <- 'error' end_of word
KEYWORD_export <- 'export' end_of word
KEYWORD_extern <- 'extern' end_of word
KEYWORD fn <- 'fn' end of word
KEYWORD_for <- 'for' end of word
KEYWORD_ if <- 'if' end_of word
KEYWORD inline <- 'inline' end of word
KEYWORD noalias <- 'noalias' end of word
KEYWORD_nosuspend <- 'nosuspend' end of word
KEYWORD_noinline <- 'noinline' end of word
KEYWORD_opaque <- 'opaque' end of word
KEYWORD_or <- 'or' end of word
KEYWORD_orelse <- 'orelse' end of word
KEYWORD_ packed <- 'packed' end of word
KEYWORD_ pub <- 'pub' end of word
KEYWORD_resume <- 'resume' end of word
KEYWORD_ return <- 'return' end of word
KEYWORD linksection <- 'linksection' end of word
KEYWORD_struct <- 'struct' end of word
KEYWORD_ suspend <- 'suspend' end of word
KEYWORD_ switch <- 'switch' end of word
KEYWORD_ test <- 'test' end of word
KEYWORD threadlocal <- 'threadlocal' end of word
KEYWORD_try <- 'try' end_of word
KEYWORD union <- 'union' end of word

KEYWORD unreachable <- 'unreachable' end of word
KEYWORD usingnamespace <- 'usingnamespace' end of word
KEYWORD var <- 'var' end of word
KEYWORD volatile <- 'volatile' end of word
KEYWORD while <- 'while' end of word

keyword <- KEYWORD addrspace / KEYWORD align /
KEYWORD allowzero / KEYWORD and

/ KEYWORD anyframe / KEYWORD anytype / KEYWORD asm /
KEYWORD async

/ KEYWORD await / KEYWORD break / KEYWORD callconv /
KEYWORD catch

/ KEYWORD comptime / KEYWORD const /
KEYWORD continue / KEYWORD defer

/ KEYWORD else / KEYWORD_ enum / KEYWORD_ errdefer /
KEYWORD_error / KEYWORD export

/ KEYWORD extern / KEYWORD_ fn / KEYWORD for /
KEYWORD if

/ KEYWORD inline / KEYWORD noalias /
KEYWORD nosuspend / KEYWORD noinline

/ KEYWORD opaque / KEYWORD or / KEYWORD orelse /
KEYWORD_packed

/ KEYWORD_pub / KEYWORD_resume / KEYWORD return /
KEYWORD_linksection

/ KEYWORD struct / KEYWORD suspend / KEYWORD switch
/ KEYWORD_test

/ KEYWORD_ threadlocal / KEYWORD_try / KEYWORD_union
/ KEYWORD_unreachable

/ KEYWORD_usingnamespace / KEYWORD_var /
KEYWORD_volatile / KEYWORD_while

grammar.y

Zen§

Communicate intent precisely.

Edge cases matter.

Favor reading code over writing code.

Only one obvious way to do things.

Runtime crashes are better than bugs.

Compile errors are better than runtime crashes.
Incremental improvements.

Avoid local maximums.

Reduce the amount one must remember.
Focus on code rather than style.

Resource allocation may fail; resource deallocation must succeed.
Memory is a resource.

Together we serve the users.

	Documentation - The Zig Programming Language
	Zig Language Reference
	Zig Version
	Table of Contents
	Introduction §
	Zig Standard Library §
	Hello World §
	Comments §
	Doc Comments §
	Top-Level Doc Comments §

	Values §
	Primitive Types §
	Primitive Values §
	String Literals and Unicode Code Point Literals §
	Escape Sequences §
	Multiline String Literals §

	Assignment §
	undefined §

	Zig Test §
	Test Declarations §
	Nested Container Tests §
	Test Failure §
	Skip Tests §
	Report Memory Leaks §
	Detecting Test Build §
	Test Output and Logging §
	The Testing Namespace §
	Test Tool Documentation §

	Variables §
	Identifiers §
	Container Level Variables §
	Static Local Variables §
	Thread Local Variables §
	Local Variables §

	Integers §
	Integer Literals §
	Runtime Integer Values §

	Floats §
	Float Literals §
	Floating Point Operations §

	Operators §
	Table of Operators §
	Precedence §

	Arrays §
	Multidimensional Arrays §
	Sentinel-Terminated Arrays §

	Vectors §
	Pointers §
	volatile §
	Alignment §
	allowzero §
	Sentinel-Terminated Pointers §

	Slices §
	Sentinel-Terminated Slices §

	struct §
	Default Field Values §
	extern struct §
	packed struct §
	Struct Naming §
	Anonymous Struct Literals §
	Tuples §

	enum §
	extern enum §
	Enum Literals §
	Non-exhaustive enum §

	union §
	Tagged union §
	extern union §
	packed union §
	Anonymous Union Literals §

	opaque §
	Blocks §
	Shadowing §
	Empty Blocks §

	switch §
	Exhaustive Switching §
	Switching with Enum Literals §
	Inline switch §

	while §
	Labeled while §
	while with Optionals §
	while with Error Unions §
	inline while §

	for §
	Labeled for §
	inline for §

	if §
	defer §
	unreachable §
	Basics §
	At Compile-Time §

	noreturn §
	Functions §
	Pass-by-value Parameters §
	Function Parameter Type Inference §
	Function Reflection §

	Errors §
	Error Set Type §
	The Global Error Set §

	Error Union Type §
	catch §
	try §
	errdefer §
	Common errdefer Slip-Ups §
	Merging Error Sets §
	Inferred Error Sets §

	Error Return Traces §
	Implementation Details §

	Optionals §
	Optional Type §
	null §
	Optional Pointers §

	Casting §
	Type Coercion §
	Type Coercion: Stricter Qualification §
	Type Coercion: Integer and Float Widening §
	Type Coercion: Float to Int §
	Type Coercion: Slices, Arrays and Pointers §
	Type Coercion: Optionals §
	Type Coercion: Error Unions §
	Type Coercion: Compile-Time Known Numbers §
	Type Coercion: Unions and Enums §
	Type Coercion: undefined §
	Type Coercion: Tuples to Arrays §

	Explicit Casts §
	Peer Type Resolution §

	Zero Bit Types §
	void §

	Result Location Semantics §
	usingnamespace §
	comptime §
	Introducing the Compile-Time Concept §
	Compile-Time Parameters §
	Compile-Time Variables §
	Compile-Time Expressions §

	Generic Data Structures §
	Case Study: print in Zig §

	Assembly §
	Output Constraints §
	Input Constraints §
	Clobbers §
	Global Assembly §

	Atomics §
	Async Functions §
	Builtin Functions §
	@addrSpaceCast §
	@addWithOverflow §
	@alignCast §
	@alignOf §
	@as §
	@atomicLoad §
	@atomicRmw §
	@atomicStore §
	@bitCast §
	@bitOffsetOf §
	@bitSizeOf §
	@breakpoint §
	@mulAdd §
	@byteSwap §
	@bitReverse §
	@offsetOf §
	@call §
	@cDefine §
	@cImport §
	@cInclude §
	@clz §
	@cmpxchgStrong §
	@cmpxchgWeak §
	@compileError §
	@compileLog §
	@constCast §
	@ctz §
	@cUndef §
	@cVaArg §
	@cVaCopy §
	@cVaEnd §
	@cVaStart §
	@divExact §
	@divFloor §
	@divTrunc §
	@embedFile §
	@enumFromInt §
	@errorFromInt §
	@errorName §
	@errorReturnTrace §
	@errSetCast §
	@export §
	@extern §
	@fence §
	@field §
	@fieldParentPtr §
	@floatCast §
	@floatFromInt §
	@frameAddress §
	@hasDecl §
	@hasField §
	@import §
	@inComptime §
	@intCast §
	@intFromBool §
	@intFromEnum §
	@intFromError §
	@intFromFloat §
	@intFromPtr §
	@max §
	@memcpy §
	@memset §
	@min §
	@wasmMemorySize §
	@wasmMemoryGrow §
	@mod §
	@mulWithOverflow §
	@panic §
	@popCount §
	@prefetch §
	@ptrCast §
	@ptrFromInt §
	@rem §
	@returnAddress §
	@select §
	@setAlignStack §
	@setCold §
	@setEvalBranchQuota §
	@setFloatMode §
	@setRuntimeSafety §
	@shlExact §
	@shlWithOverflow §
	@shrExact §
	@shuffle §
	@sizeOf §
	@splat §
	@reduce §
	@src §
	@sqrt §
	@sin §
	@cos §
	@tan §
	@exp §
	@exp2 §
	@log §
	@log2 §
	@log10 §
	@fabs §
	@floor §
	@ceil §
	@trunc §
	@round §
	@subWithOverflow §
	@tagName §
	@This §
	@trap §
	@truncate §
	@Type §
	@typeInfo §
	@typeName §
	@TypeOf §
	@unionInit §
	@Vector §
	@volatileCast §
	@workGroupId §
	@workGroupSize §
	@workItemId §

	Build Mode §
	Debug §
	ReleaseFast §
	ReleaseSafe §
	ReleaseSmall §

	Single Threaded Builds §
	Undefined Behavior §
	Reaching Unreachable Code §
	Index out of Bounds §
	Cast Negative Number to Unsigned Integer §
	Cast Truncates Data §
	Integer Overflow §
	Default Operations §
	Standard Library Math Functions §
	Builtin Overflow Functions §
	Wrapping Operations §

	Exact Left Shift Overflow §
	Exact Right Shift Overflow §
	Division by Zero §
	Remainder Division by Zero §
	Exact Division Remainder §
	Attempt to Unwrap Null §
	Attempt to Unwrap Error §
	Invalid Error Code §
	Invalid Enum Cast §
	Invalid Error Set Cast §
	Incorrect Pointer Alignment §
	Wrong Union Field Access §
	Out of Bounds Float to Integer Cast §
	Pointer Cast Invalid Null §

	Memory §
	Choosing an Allocator §
	Where are the bytes? §
	Implementing an Allocator §
	Heap Allocation Failure §
	Recursion §
	Lifetime and Ownership §

	Compile Variables §
	Root Source File §
	Zig Build System §
	Building an Executable §
	Building a Library §
	Compiling C Source Code §

	C §
	C Type Primitives §
	Import from C Header File §
	C Translation CLI §
	Command line flags §
	Using -target and -cflags §
	@cImport vs translate-c §

	C Translation Caching §
	Translation failures §
	C Macros §
	C Pointers §
	C Variadic Functions §
	Exporting a C Library §
	Mixing Object Files §

	WebAssembly §
	Freestanding §
	WASI §

	Targets §
	Style Guide §
	Whitespace §
	Names §
	Examples §
	Doc Comment Guidance §

	Source Encoding §
	Keyword Reference §
	Appendix §
	Containers §
	Grammar §
	Zen §

