120 Chapter4 Process Management

The interactivity score is compared to the interactivity threshold, which is the
cutoff point for considering a thread interactive. The interactivity threshold is
modified by the process nice value. Positive nice values make it more challenging
for a thread to be considered interactive, while negative values make it easier.
Thus, the nice value gives the user some control over the primary mechanism of
reducing thread-scheduling latency.

A thread is considered to be interactive if the ratio of its voluntary sleep time
versus its run time is below a certain threshold. The interactivity threshold is
defined in the ULE code and is not configurable. ULE uses two equations to com-
pute the interactivity score of a thread. For threads whose sleep time exceeds their
run time, Eq 4.1 is used:

scaling factor

interactivity score = (Eq.4.1)
sleep | run

When a thread’s run time exceeds its sleep time, Eq. 4.2 is used instead:

: . scaling factor)
interactivity score = + scaling factor (Eq.4.2)
run / sleep

The scaling factor is the maximum interactivity score divided by two. Threads
that score below the interactivity threshold are considered to be interactive; all
others are noninteractive. The sched_interact_update() routine is called at several
points in a threads existence—for example, when the thread is awakened by a
wakeup () call—to update the thread’s run time and sleep time. The sleep- and
run-time values are only allowed to grow to a certain limit. When the sum of the
run time and sleep time pass the limit, they are reduced to bring them back into
range. An interactive thread whose sleep history was not remembered at all would
not remain interactive, resulting in a poor user experience. Remembering an inter-
active thread’s sleep time for too long would allow the thread to get more than its
fair share of the CPU. The amount of history that is kept and the interactivity
threshold are the two values that most strongly influence a user’s interactive expe-
rience on the system.

Priorities are assigned according to the thread’s interactivity status. Interac-
tive threads have a priority that is derived from the interactivity score and are
placed in a priority band above batch threads. They are scheduled like real-time
round-robin threads. Batch threads have their priorities determined by the esti-
mated CPU utilization modified according to their process nice value. In both
cases, the available priority range is equally divided among possible interactive
scores or percent-cpu calculations, both of which are values between 0 and 100.
Since there are fewer than 100 priorities available for each class, some values
share priorities. Both computations roughly assign priorities according to a his-
tory of CPU utilization but with different longevities and scaling factors.

The CPU utilization estimator accumulates run time as a thread runs and
decays it as a thread sleeps. The utilization estimator provides the percent-cpu
values displayed in top and ps. ULE delays the decay until a thread wakes to
avoid periodically scanning every thread in the system. Since this delay leaves

